

A-Level Chemistry

Thin Layer Chromatography

Mark Scheme

Time available: 58 minutes Marks available: 50 marks

www.accesstuition.com

Mark schemes

1.	(a)	M1 $\frac{27}{80} = 0.34$	1	
		 M2 glycine M1 some relevant working is needed to arrive at 0.325 - 0.35 no ECF based on M1 	1	
	(b)	use uv lamp or ninhydrin <i>allow</i> developing / locating agent / iodine	1	
	(c)	each amino acid has different (relative) affinity/attraction to/solubility in stationary and mobile phases allow reference to different solubility in solvent OR different affinity for stationary phase		
2.	(a)	<u>Conc</u> HCI Allow concentrations of 5M or higher Allow <u>conc</u> sulfuric or <u>conc</u> strong alkalis	1	[4]
	(b)	Using ninhydrin or ultraviolet light Allow I ₂ (vapour)	1	
	(c)	7 or seven	1	
	(d)	Some of the amino acids did not separate/dissolve with the first/either solvent OR		
		Some amino acids have the same Rf value or have the same affinity with the first/either solvent		
		Not amino acids have different Rf values in different solvents	1	[4]
3.	(a)	Wear plastic gloves:		
		Essential – to prevent contamination from the hands to the plate	1	
		Add developing solvent to a depth of not more than 1 cm ³ :		
		Essential – if the solvent is too deep it will dissolve the mixture from the plate	1	

www.accesstuition.com

	Allow the solvent to rise up the plate to the top:		
	Not essential – the $R_{\rm f}$ value can be calculated if the solvent front does not reach the top of the plate		
		1	
	Allow the plate to dry in a fume cupboard:		
	Essential – the solvent is toxic		
	Allow hazardous		
		1	
(b)	Spray with developing agent or use UV		
		1	
	Measure distances from initial pencil line to the spots (x)		
		1	
	Manager distance from initial nancil line to colyant front line (.)		
	Measure distance from initial pencil line to solvent front line (y)	1	
		_	
	R_f value = x / y	1	
		1	
(c)	Amino acids have different polarities		
		1	
	Therefore, have different retention on the stationary phase or different solubility in the developing solvent		
		1	
			[10]
(a)	Gas chromatography explanation		
. ,			
	Different retention times / dipeptides appear at different times.	1	
		1	
	Different balance between solubility in the moving phase / gas carrier and retention by the	•	
	stationary phase / column OR different relative affinity for mobile and stationary phases.	1	
		1	
	Mass spectrometry explanation		
	Same <i>m/z</i> values.		
	Same m/2 values.	1	
		-	
	(Both) dipeptides / J and K have same molecular formula / $M_{\rm r}$.	1	
		1	

4.

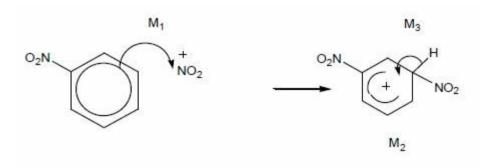
(b) ser-ala

ala-lys

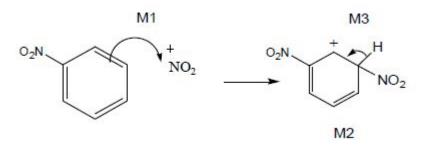
ser-ala-lys

This order only.

1


1

1


5.

(a)

 $\begin{array}{l} \mathsf{HNO}_3 \ + \ 2\mathsf{H}_2\mathsf{SO}_4 \ \longrightarrow \ \mathsf{NO}_2^+ \ + \ \mathsf{H}_3\mathsf{O}^+ \ + \ 2\mathsf{HSO}_4^- \\ & Allow \ H_2\mathsf{SO}_4 \ + \ \mathsf{HNO}_3 \ \longrightarrow \ \mathsf{NO}_2^+ \ + \ \mathsf{HSO}_4^- \ + \ \mathsf{H}_2\mathsf{O} \\ & Allow \ a \ combination \ of \ equations \ which \ produce \ \mathsf{NO}_2^+ \\ & Penalise \ equations \ which \ produce \ \mathsf{SO}_4^{2^-} \end{array}$

OR Kekule

M1 Arrow from inside hexagon to N or + on N (Allow NO_2^+)

M2 Structure of intermediate

- horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller
- + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6)

M3 Arrow from bond into hexagon (Unless Kekule)

- Allow M3 arrow independent of M2 structure
- + on H in intermediate loses M2 not M3

(c) D

- (d) (Balance between) solubility in moving phase and retention by stationary phase OR (relative) affinity for stationary / solid and mobile / liquid / solvent (phase)
- (e) Solvent depth must be below start line Ignore safety

1

1

(f) 1,2- is more polar **OR** 1,4- is less polar **OR** 1,2 is polar, 1,4- is non-polar

1,4- (or Less/non polar is) less attracted to (polar) plate / stationary phase / solid **OR** (Less/non polar is) more attracted to / more soluble in (non-polar) solvent / mobile phase / hexane

M2 dependent on correct M1 If M1 is blank then read explanation for possible M1 and M2 Allow converse argument for 1,2

(g) No CE = 0

6.

(9)				
	Yes - mark on but there is NO MARK FOR YES Mark independently following yes			
	Solv	ent (more) polar or ethyl ethanoate is polar	1	
	Polar isomer more attracted to / more soluble in / stronger affinity to the solvent (than before)			
		Penalise bonded to mobile phase in M2	1	[12]
(a)	M1	Moles of cyclohexanol = $(10 \times 0.96)/100.0 = 0.096$		
		Correct answer scores all 3 marks	1	
	M2	Max mass of cyclohexene = $0.096 \times 82.0 = 7.87(2)$		
		= M1 × 82.0 (process mark)	1	
	М3	% yield = (5.97 / 7.87) × 100 = 76% (Allow range 75.8 - 76)		
		= (5.97 / M2) × 100 (process mark)	1	
	Alter	native method		
	M1	Moles of cyclohexanol = $(10 \times 0.96)/100.0 = 0.096$		
	M2	Moles of cyclohexene = 5.97/82.0 = 0.0728		
	М3	% yield = 0.0728 / 0.096 × 100 = 76% (allow range 75.8 – 76) = (M2 / M1) × 100 Allow 1/3 for 62(.2)%		

1

(b)	Add bromine (water)				
		If M1 not correct then only allow M2 if reagent involves bromine (water)			
		(water)	1		
	Wou	ld turn (from orange to) colourless / decolourise			
		Do not allow incorrect starting colour, but allow brown/red/yellow			
		Not discolour.			
		Ignore clear	1		
			1		
(c)	Na ₂ 0	CO_3 would neutralise/react with/remove (phosphoric) acid/H ₃ PO ₄ /H ⁺			
			1		
(d)	avoi out	d pressure build-up / release pressure / release CO ₂ /air/gas / prevent stopper blowing	g		
		Ignore explosion			
		Do not allow an incorrect named gas			
		Allow idea that build-up of gas/ CO_2 would lead to increased			
		pressure/stated effect of increased pressure	1		
(e)	Doe	s not dissolve in/react with the cyclohexene			
(-)	200	Allow remains a solid/is inert in cyclohexene			
		Allow organic product/organic compound formed/ organic			
		layer/distillate instead of cyclohexene			
		Do not allow if answer implies cyclohexanol			
		Do not allow if answer says does not react with products			
		Ignore references to filtration Do not allow insoluble/unreactive unless qualified by implied			
		reference to cyclohexene			
			1		
(f)	lf dia	agram drawn:			
	M1	diagram of basic set up to include flask or tube with side-arm/Buchner flask, flat-bottomed funnel/Buchner funnel, filter paper			
	M2	apparatus should work, flow through, air-tight connection between flask and funnel, arrow/label/description (to vacuum pump)			
		Do not allow "standard" Y-shaped funnel			
			1		
	lf de	scription given:			
	M 1	Buchner funnel/flat-bottomed funnel containing filter paper			
	M2	Buchner flask/side-arm flask connected to vacuum pump			
		Do not allow just "funnel"			
		Penalise M2 if described apparatus would not actually work.	1		
			1		

(g) Cyclohexene is less polar than cyclohexanol / cyclohexanol is more polar than cyclohexene
 It = cyclohexene Allow cyclohexene is non-polar and cyclohexanol is polar

Cyclohexene has a greater affinity/attraction for the mobile phase/hexane / cyclohexanol has a greater affinity/attraction for the stationary phase/silica

Allow cyclohexanol held in the stationary phase for longer Allow cyclohexene is more soluble in the mobile phase/hexane or converse for cyclohexanol Allow references to hydrogen bonds between cylcohexanol and silica

(h) Would be no peak at $3230 - 3550 \text{ cm}^{-1}$ due to O—H((alcohol))

OR

There would be no additional peaks in the fingerprint region compared to a pure sample / fingerprint region exactly matches cyclohexene

Need wavenumber and bond for mark

1

1