

A-Level Chemistry

Transition Metal Catalysts

Mark Scheme

Time available: 70 minutes Marks available: 64 marks

1. (a)

This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.
1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.
Level 0	0 marks Insufficient correct chemistry to gain a mark.

Stage 1

1a Heterogeneous means in a different phase/state from reactants
1b Catalyst speeds up reaction and is left unchanged OR lowers the activation energy for the reaction

Stage 2
2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron
2b Bonds weaken/reaction takes place
2c Products desorb/leave from the surface (of the iron)

Stage 3

3a Large surface area (of iron) by using powder or small pellets or support medium/mesh
3b Catalyst poisoned / sulfur poisons or binds to the catalyst
3c Active sites blocked
Ignore references to temperature and pressure
(b) Two negative ions repel

So activation energy is high
1
$2 \mathrm{Fe}^{2+}+\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+2 \mathrm{Fe}^{3+}$
$2 \mathrm{Fe}^{3+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Fe}^{2+}+\mathrm{I}_{2}$
Ignore any state symbols given
Allow multiples for both equations
Allow equations in either order
(c) (Zn ions) have only one oxidation state Or Zn^{2+} is the only ion

Allow doesn't have variable oxidation state
Allow cannot be oxidised to Zn^{3+} Ignore has a full d shell
(d) M 1 Amount of $\mathrm{Fe}=0.998 \div 55.8=0.0179 \mathrm{~mol}$

M2 Amount of $\mathrm{HCl}=0.0300 \mathrm{~mol}$

M 3 HCl is the limiting reagent

M4 Amount of H_{2} produced $=0.0150 \mathrm{~mol}$

$$
M 4=M 2 \div 2
$$

$\mathrm{M} 5 \mathrm{~T}=303 \mathrm{KP}=100000 \mathrm{~Pa}$

$$
\begin{gathered}
\mathrm{M}^{\mathrm{V}} \mathrm{~V}\left(=\frac{0.0150 \times 8.31 \times 303}{100000}\right)=3.78 \times 10^{-4}\left(\mathrm{~m}^{3}\right) \\
M 6 \mathrm{~V}\left[=\frac{\mathrm{M} 4 \times 8.31 \times 303}{100000}\right)\left(\mathrm{m}^{3}\right)
\end{gathered}
$$

(e) FeCO_{3} or iron(II) carbonate

Green
Allow white
(f) $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$ Ignore square brackets if added
brown
$2\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{CO}_{3}^{2-} \rightarrow 2 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}$
Accept multiples
1

1
(g) $\mathrm{M}_{1} \mathrm{Fe}^{3+}$ is smaller (than Fe^{2+}) $\mathbf{O R F e}{ }^{3+}$ has a greater charge $\mathbf{O R ~ F e}{ }^{3+}$ has a greater charge density $\mathbf{O R ~ F e}{ }^{3+}$ has a greater charge to size ratio Penalise $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$ ions once in M1 or M2
$\mathrm{M} 2 \mathrm{Fe}^{3+}$ ions are more polarising $\mathbf{O R} \mathrm{Fe}^{3+}$ ions polarise water molecules more

M3 So more O-H bonds (in the water ligands) break OR more H^{+}ions released OR weaken $\mathrm{O}-\mathrm{H}$ bonds in ligands more (in the Fe^{3+} solution)

Do not allow Fe^{3+} releases $3 \mathrm{H}^{+}$ions
2. (a) A reaction that produces its own catalyst/ one of the products is the catalyst
Mn^{2+}
Allow Mn^{3+}
1
(b) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(c) There is no/very little catalyst at the start OR the reaction only speeds up when the catalyst is produced

Two negative ions $\left(\mathrm{MnO}_{4}^{-}\right.$and $\left.\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ repel
Reference to molecules loses M2

The activation energy for the reaction is high / heat is required to overcome the activation energy
(d) $\mathrm{M} 1 \quad 5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}(\mathrm{aq})+2 \mathrm{MnO}_{4}^{-}(\mathrm{aq})+16 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow$

$$
10 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{Mn}^{2+}(\mathrm{aq})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Ignore state symbols

1

1

M3 $n\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)=\frac{5}{2} \times 5.28 \times 10^{-4}=1.32 \times 10^{-3}$
M3 is for $M 2 \times 5 / 2$
If wrong ratio used then can only score M2, M4, M5 and M6

M4 $n\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right.$ in flask originally $)=1.32 \times 10^{-3} \times 10=1.32 \times 10^{-2}$
M4 is for M3 $\times 10$

M5 $n\left(\mathrm{~K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right)=\frac{1.32 \times 10^{-2}}{3}=4.40 \times 10^{-3}$
$\left(\mathrm{Mr} \mathrm{K} \mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}=491.1\right)$
M5 is for M4 $\div 3$
1

M6 Mass of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ reacted $=4.40 \times 10^{-3} \times 491.1=2.16 \mathrm{~g}$ M6 is for M5 $\times 491$ (.1)

1
M7 \% purity $=\frac{2.16}{2.29} \times 100=\underline{94.3}$ or 94.4%
Answer must be to 3 s.f.
Correct answer scores 6 marks; mark equation separately
Alternative method using ratio by moles:
M5 $n\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)=4.66 \times 10^{-3} \times 3=0.0140$ moles in $250 \mathrm{~cm}^{3}$
M6 n(complex) $=2.29 / 491.1=4.66 \times 10^{-3}$ moles in $250 \mathrm{~cm}^{3}$
$M 7 \%=0.0132 / 0.0140 \times 100=\underline{94.3}$ or 94.4%
(e) Make some known concentrations (of the coloured solution and read the absorbance of each one using a colorimeter)

Ignore addition of suitable ligand

1
Plot a graph of absorbance vs concentration
Not just "plot a calibration curve" / reference to Beer-Lambert graph is insufficient
Do not allow transmittance in M2

Read/compare unknown concentration from calibration curve/graph (and hence the concentration from the graph)

M3 can only be scored if graph/curve mentioned
1
[16]
3. (a) $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{CO}_{2}$
Mn^{2+} OR Mn ${ }^{3+}$
If catalyst incorrect can only score M1 and M3
(Possible because) Mn can exist in variable oxidation states
E_{a} lowered because oppositely charged ions attract
These marks can be gained in any order
Mn^{3+} (reduced) to Mn^{2+} by $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ / equation
M5 may appear before M2
Mn^{2+} (oxidised (back)) to Mn^{3+} by MnO_{4}^{-}/ equation
M5 and M6 can be scored in unbalanced equations or in words showing:
$\mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow \mathrm{Mn}^{2+}$
$\mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{3+}$
(b) Graph marks

S-shaped curve must not rise significantly and must not fall rapidly initially.

Starts on concentration axis and is levelling out (can level out on time axis or above but parallel to time axis)

Cannot score graph marks (M1 and M2) if no axes and / or no labels

Explanation marks

Slope / rate increases as catalyst (concentration) forms

Slope / rate decreases as (concentration) of MnO_{4}^{-}ions / reactant(s) decreases (OR reactants are being used up)

Explanation marks can be awarded independent of graph.
4. (a) Negative ions repel one another
(b) Positive ions attract negative ions in catalysed process

Allow activation energy decreases.
Allow alternative route with lower E_{a}
Ignore references to heterogenous catalysis.
(c) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+\mathrm{Ze}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}$

Allow multiples including fractions.
Ignore state symbols.
(d) $\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2}$

Allow multiples including fractions.
Ignore state symbols.
Allow the correct equation involving $\mathrm{I}_{3}-$

$$
\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+3 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{3}^{-}
$$

5. (a) Variable / many oxidation states
(b) $\mathrm{V}_{2} \mathrm{O}_{5}+\mathrm{SO}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{4}+\mathrm{SO}_{3}$

Equations can be in either order
Allow multiples
$\mathrm{V}_{2} \mathrm{O}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~V}_{2} \mathrm{O}_{5}$
(c) (i) In a different phase / state from reactants
(ii) Impurities poison / deactivate the catalyst / block the active sites Allow (adsorbs onto catalyst AND reduces surface area)
(d) (i) The catalyst is a reaction product
(ii) $\mathrm{Mn}^{2+} / \mathrm{Mn}^{3+}$ ion(s)
(iii) $4 \mathrm{Mn}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Mn}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$

Equations can be in either order

$$
2 \mathrm{Mn}^{3+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+2 \mathrm{CO}_{2}
$$

