

A-Level Chemistry

Transition Metal Catalysts

Mark Scheme

Time available: 70 minutes Marks available: 64 marks

www.accesstuition.com

Mark schemes

(a)

1.

	This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question.				
Level 3 5-6 marks	All stages are covered and the description of each stage is generally correct and virtually complete. Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3.				
Level 2 3-4 marks	All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3.				
Level 1 1-2 marks	Two stages are covered but the description of each stage may be incomplete or may contain inaccuracies, OR only one stage is covered but the explanation is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order.				
Level 0	0 marks Insufficient correct chemistry to gain a mark.				

Stage 1

1a Heterogeneous means in a different phase/state from reactants 1b Catalyst speeds up reaction and is left unchanged **OR** lowers the activation energy for the reaction

Stage 2

2a Hydrogen and nitrogen/reactants adsorb onto the surface/ active sites of the iron

2b Bonds weaken/reaction takes place

2c Products desorb/leave from the surface (of the iron)

Stage 3

3a Large surface area (of iron) by using powder or small pellets or support medium/mesh

3b Catalyst poisoned / sulfur poisons or binds to the catalyst

3c Active sites blocked

Ignore references to temperature and pressure

(b) Two negative ions repel

		1
	So activation energy is high	1
	2 Fe ²⁺ + S ₂ O ₈ ²⁻ \rightarrow 2 SO ₄ ²⁻ + 2 Fe ³⁺	
		1
	$2 \operatorname{Fe}^{3+} + 2 \operatorname{I}^{-} \rightarrow 2 \operatorname{Fe}^{2+} + \operatorname{I}_{2}$	
	Ignore any state symbols given	
	Allow multiples for both equations	
	Allow equations in either order	1
(c)	(Zn ions) have only one oxidation state Or	
	Zn ²⁺ is the only ion	
	Allow doesn't have variable oxidation state	
	Allow cannot be oxidised to Zn^{3+}	
	Ignore has a full d shell	
		1
(d)	M1 Amount of Fe = 0.998 ÷ 55.8 = 0.0179 mol	
		1
	M2 Amount of HCI = 0.0300 mol	
		1
	M3 HCI is the limiting reagent	
		1
	M4 Amount of H_2 produced = 0.0150 mol	
	$M4 = M2 \div 2$	
		1
	M5 T = 303 K P = 100 000 Pa	
		1
	$M_{\rm e}V = 0.0150 \times 8.31 \times 303 = 2.78 \times 10^{-4} ({\rm m}^3)$	
	$M6^{V} \left[= \frac{0.0150 \times 8.31 \times 303}{100\ 000} \right] = 3.78 \times 10^{-4} \ (m^{3})$	
	$M6 \bigvee \left[= \frac{M4 \times 8.31 \times 303}{100\ 000} \right] (m^3)$	
		1
(a)	Facco ar iran/III) aarbanata	
(e)	FeCO ₃ or iron(II) carbonate	1
	Crean	
	Green Allow white	
		1

(f) $Fe(H_2O)_3(OH)_3$

2.

Ignore square brackets if added

	ignore square brackets if added		1	
	brown			
			1	
	2 $[Fe(H_2O)_6]^{3+}$ + 3 CO_3^{2-} \rightarrow 2 $Fe(H_2O)_3(OH)_3$ + 3 H_2O + 3 CO_2 Accept multiples			
			1	
(g)	M1 Fe ³⁺ is smaller (than Fe ²⁺) OR Fe ³⁺ has a greater charge OR Fe ³⁺ has a greater charge density OR Fe ³⁺ has a greater charge to size ratio			
	Penalise $Fe(H_2O)_6^{3+}$ ions once in M1 or M2			
			1	
	M2 Fe ³⁺ ions are more polarising OR Fe ³⁺ ions polarise water molecules more		1	
	M3 So more O-H bonds (in the water ligands) break OR more H ⁺ ions released OR weaken O-H bonds in ligands more (in the Fe ³⁺ solution)			
	Do not allow Fe ³⁺ releases 3H ⁺ ions			
			1	
				[25]
(a)	A reaction that produces its own catalyst/ one of the products is the catalyst	1		
	Mn ²⁺			
	Allow Mn ³⁺			
		1		
(b)	H ₂ SO ₄			
		1		
(c)	There is no/very little catalyst at the start OR the reaction only speeds up when the catalyst is produced			
		1		
	Two negative ions (MnO ₄ ⁻ and C ₂ O ₄ ²⁻) repel			
	Reference to molecules loses M2			
		1		
	The <u>activation energy</u> for the reaction is high / heat is required to overcome the <u>act</u> <u>energy</u>	ivation		
		1		

(d) M1
$$5 C_2 O_4^{2-}(aq) + 2 MnO_4^{-}(aq) + 16 H^+(aq) \rightarrow 10 CO_2(g) + 2 Mn^{2+}(aq) + 8 H_2O(I)$$

Ignore state symbols

M2
$$n(MnO_4^{-}) = \frac{26.40 \times 0.02}{1000}$$
 OR $n(MnO_4^{-}) = 5.28 \times 10^{-4}$

M3
$$n(C_2O_4^{2-}) = \frac{5}{2} \times 5.28 \times 10^{-4} = 1.32 \times 10^{-3}$$

M3 is for M2 × 5/2

•			• • •										
lf	W	ron	ng r	atio	used	then c	an on	ly scor	е M2,	М4,	M5 a.	nd I	И6

M4
$$n(C_2O_4^{2-} \text{ in flask originally}) = 1.32 \times 10^{-3} \times 10 = 1.32 \times 10^{-2}$$

M4 is for M3 × 10

M5
$$n(K_3[Fe(C_2O_4)_3].3H_2O) = \frac{1.32 \times 10^{-2}}{3} = 4.40 \times 10^{-3}$$

$$(Mr K_3[Fe(C_2O_4)_3].3H_2O = 491.1)$$

M5 is for M4 ÷ 3

M6 Mass of
$$K_3[Fe(C_2O_4)_3].3H_2O$$
 reacted = 4.40 × 10⁻³ × 491.1 = 2.16 g
M6 is for M5 × 491(.1)

M7 % purity =
$$\frac{2.16}{2.29}$$
 x100 = $\frac{94.3 \text{ or } 94.4}{8}$ %

Answer must be to 3 s.f. Correct answer scores 6 marks; mark equation separately Alternative method using ratio by moles: $M5 n(C_2O_4^{2-}) = 4.66 \times 10^{-3} \times 3 = 0.0140$ moles in 250cm³ $M6 n(complex) = 2.29/491.1 = 4.66 \times 10^{-3}$ moles in 250cm³ $M7 \% = 0.0132/0.0140 \times 100 = 94.3$ or 94.4%

1

1

1

1

1

1

	(e)	Make <u>some known</u> concentration <u>s</u> (of the coloured solution and read the absorbance of each one using a colorimeter)		
		•		
		Ignore addition of suitable ligand	1	
		Plot a graph of absorbance vs concentration		
		Not just "plot a calibration curve" / reference to Beer-Lambert graph is insufficient		
		Do not allow transmittance in M2		
			1	
		Read/compare unknown concentration from calibration curve/graph (and hence the concentration from the graph)		
		M3 can only be scored if graph/curve mentioned		
			1	[16]
				[10]
3.	(a)	$2MnO_4^{-} + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$		4
				1
		Mn ²⁺ OR Mn ³⁺		
		If catalyst incorrect can only score M1 and M3		
				1
		(Possible because) <u>Mn</u> can exist in variable oxidation states		
				1
		E _a lowered because oppositely charged ions attract		
		These marks can be gained in any order		
				1
		Mn^{3+} (reduced) to Mn^{2+} by $C_2O_4^{2-}$ / equation		
		M5 may appear before M2		
				1
		Mn^{2+} (oxidised (back)) to Mn^{3+} by MnO_4^- / equation		
		M5 and M6 can be scored in unbalanced equations or in words showing:		
		$Mn^{3+} + C_2 O_4^{2-} \rightarrow Mn^{2+}$		
		$Mn^{2+} + MnO_4^- \rightarrow Mn^{3+}$		
		·		1

4.

Cannot score graph marks (M1 and M2) if no axes and / or no labels

		1	
	Explanation marks		
	Slope / rate increases as catalyst (concentration) forms		
		1	
	Slope / rate decreases as (concentration) of MnO ₄ ⁻ ions / reactant(s) decreases (OR reactants are being used up)		
	Explanation marks can be awarded independent of graph.		
		1	[40]
			[10]
(a)	Negative ions <u>repel</u> one another		
		1	
(b)	Positive ions attract negative ions in catalysed process		
	Allow activation energy decreases.		
	Allow alternative route with lower E _a		
	Ignore references to heterogenous catalysis.		
		1	
(c)	$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$		
	Allow multiples including fractions.		
	Ignore state symbols.		
		1	
(d)	$S_2O_8^{2-} + 2I^- \longrightarrow 2SO_4^{2-} + I_2$		
	Allow multiples including fractions.		
	Ignore state symbols.		
	Allow the correct equation involving I_3^-		
	$S_2O_8^{2-} + 3I^- \longrightarrow 2SO_4^{2-} + I_3^-$		
		1	
			[4]

5.

(a)

 $V_2O_5 + SO_2 \rightarrow V_2O_4 + SO_3$ (b) Equations can be in either order Allow multiples 1 $V_2O_4 + \frac{1}{2}O_2 \rightarrow V_2O_5$ 1 In a different phase / state from reactants (c) (i) 1 Impurities poison / deactivate the catalyst / block the active sites (ii) Allow (adsorbs onto catalyst AND reduces surface area) 1 (d) The catalyst is a reaction product (i) 1 Mn²⁺ / Mn³⁺ ion(s) (ii) 1 $4Mn^{2+} + MnO_4^- + 8H^+ \rightarrow 5Mn^{3+} + 4H_2O$ (iii) Equations can be in either order 1 $2Mn^{3+} + C_2O_4^{2-} \rightarrow 2Mn^{2+} + 2CO_2$ 1

[9]