

A-Level Chemistry

Transition Metal Catalysts

Question Paper

Time available: 70 minutes Marks available: 64 marks

1.	This question is about iron and its ions.

(a) Discuss the role of iron as a heterogeneous catalyst in the Haber process.

$$3 H_2 + N_2 \rightleftharpoons 2 NH_3$$

Your answer should include:

- the meaning of the term heterogeneous catalyst
- how iron acts as a heterogeneous catalyst

•	the factors that affect the efficiency and lifetime of the catalyst.

(6)

Fe ²⁺ ions catalyse the reaction between peroxodisulfate(VI) ions and iodide ions in aqueous solution.
$S_2O_8^{2-}(aq) + 2 I^-(aq) \rightarrow 2 SO_4^{2-}(aq) + I_2(aq)$
Explain why this reaction is slow before the catalyst is added. Give two equations to show how Fe ²⁺ ions catalyse this reaction.
Why reaction is slow before catalyst added
Equation 1
Equation 2
Give a reason why Zn ²⁺ ions do not catalyse the reaction in part (b).

(d) Iron reacts with dilute hydrochloric acid to form iron(II) chloride and hydrogen.

$$Fe(s) + 2 HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

A 0.998 g sample of pure iron is added to 30.0 cm³ of 1.00 mol dm⁻³ hydrochloric acid.

One of these reagents is in excess and the other reagent limits the amount of hydrogen produced in the reaction.

Calculate the maximum volume, in m³, of hydrogen gas produced at 30 °C and 100 kPa.

Give your answer to 3 significant figures.

In your answer you should identify the limiting reagent in the reaction.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Volume of hydrogen _____ m³

(6)

The figure below shows some reactions of iron ions in aqueous solution.

(e) Identify A and state its colour.

Identity _____

Colour _____

(2)

JIVE 8	In ionic equation for the reaction of $[Fe(H_2O)_6]^{3+}$ with aqueous Na_2CO_3 to form B
Formu	ıla
Colou	r
lonic e	equation
	·
	In why an aqueous solution containing $[Fe(H_2O)_6]^{3+}$ ions has a lower pH than an substitution containing $[Fe(H_2O)_6]^{2+}$ ions.

This wate		led to a 250 cm ³ volumetric flask and made up to 250 cm ³ with distilled	
A 25 The	.0 cm ³ portion wa mixture was heate	as pipetted into a conical flask and an excess of acid was added. ed to 60° C and titrated with 0.0200 mol dm ⁻³ KMnO ₄ solution. solution were needed for a complete reaction.	
In thi	is titration only the	e C ₂ O ₄ ²⁻ ions react with the KMnO ₄ solution.	
(a)	The reaction bet	tween C ₂ O ₄ ²⁻ ions and MnO4- ions is autocatalysed.	
	Explain what is r	meant by the term autocatalysed and identify the catalyst in the reaction.	
			(2)
(b)	Select from the I flask. Put a tick (✓) in	list the most suitable substance used to acidify the solution in the conica the correct box.	ſ
	$H_2C_2O_4$		
	H ₂ SO ₄		
	HCI		
	HNO ₃		
			(1)

A student weighed out a 2.29 g sample of impure $K_3[Fe(C_2O_4)_3].3H_2O$ and dissolved it in water.

2.

			······	
or the reaction between		na ivinO ₄ ions i (₃ [Fe(C ₂ O ₄) ₃].3l		n.
o 3 significant figures				
o 3 significant figures				
o 3 significant figures	s.			
o 3 significant figures	s.			
o 3 significant figures				
o 3 significant figures	s.			
o 3 significant figures				
o 3 significant figures				
o 3 significant figures				
o 3 significant figures				
o 3 significant figures				
o 3 significant figures				

	(e)	A solution of KMnO ₄ has an unknown concentration.	
		Describe briefly how colorimetry can be used to determine the concentration of this solution.	
		(Total	(3 I 16 marks
3.		redox reaction, in aqueous solution, between acidified potassium manganate(VII) and ium ethanedioate is autocatalysed.	
	(a)	Write an equation for this redox reaction.	
		Identify the species that acts as the catalyst.	
		Explain how the properties of the species enable it to act as a catalyst in this reaction.	
			(6)

(b)	Sketch a graph to show how the concentration of MnO ₄ ⁻ ions varies with time in this reaction.	
	Explain the shape of the graph.	
	(То	(4) tal 10 marks)
	en iodine molecules are dissolved in aqueous solutions containing iodide ions, they rean triiodide ions (I_3^-).	ct to
	$I_2 + I^- \longrightarrow I_3^-$	
ions	reaction above between I $^-$ ions and S $_2$ O $_8$ $^{2-}$ ions has a high activation energy and S $_2$ O $_8$ are only reduced slowly to SO $_4$ $^{2-}$ ions. reaction is catalysed by Fe $^{2+}$ ions.	2- 3
(a)	Explain why the reaction between I^- ions and $S_2O_8{}^{2-}$ ions is slow.	
		(1)
(b)	Other than having variable oxidation states, explain why Fe ²⁺ ions are good catalysts	(1)
(D)	this reaction.	101
		(1)
		(1)

			-
(d)	Con	struct an overall equation for the reaction between $S_2O_8^{2-}$ ions and I^- ions.	•
(4)			
		т)	otal 4 mai
Tran	nsition	metal compounds have a range of applications as catalysts.	
(a)		e the general property of transition metals that allows the vanadium in vanadium e to act as a catalyst in the Contact Process.	(V)
			-
(b)		e two equations to show how vanadium(V) oxide acts as a catalyst in the Contactess.	ct
(b)	Prod		ct
(b)	Equ	cess.	et
(b)	Equ	ation 1	et
(c)	Equ Equ	ation 1	et
	Equ Equ	ation 1 ation 2	et .
	Equ Equ In th	ation 1 ation 2 The Contact Process, vanadium(V) oxide acts as a heterogeneous catalyst.	et .
	Equ Equ In th	ation 1 ation 2 The Contact Process, vanadium(V) oxide acts as a heterogeneous catalyst.	et .

(ii) Identify the autocatalyst in this reaction.	(ii)	Give one reason why impurities in the reactants can cause problems in processes that use heterogeneous catalysts.
hat is autocatalysed. Give the meaning of the term <i>autocatalysed</i> . Liii) Identify the autocatalyst in this reaction. Write two equations to show how the autocatalyst is involved in this oxidation of C ₂ O ₄ ²⁻ ions. Equation 1		
Give the meaning of the term $autocatalysed$. Give the meaning of the term $autocatalysed$.		
(iii) Identify the autocatalyst in this reaction. Write two equations to show how the autocatalyst is involved in this oxidation of $C_2O_4{}^{2-}$ ions. Equation 1	(i)	
Write two equations to show how the autocatalyst is involved in this oxidation of $C_2O_4{}^{2-}$ ions. Equation 1		
Write two equations to show how the autocatalyst is involved in this oxidation of $C_2O_4{}^{2-}$ ions. Equation 1		
C ₂ O ₄ ²⁻ ions. Equation 1	(ii)	Identify the autocatalyst in this reaction.
	(iii)	
Equation 2		Equation 1
Equation 2		Fauction 2
		Equation 2