

A-Level Chemistry

Transition Metals

Mark Scheme

Time available: 65 minutes Marks available: 63 marks

www.accesstuition.com

Mark schemes

1.	(a)	An electron pair on the ligand	1	
		Is donated from the ligand to the central metal ion	1	
	(b)	Blue precipitate	1	
		Dissolves to give a dark blue solution		
		$[Cu(H_2O)_6]^{2+} + 2NH_3 \longrightarrow Cu(H_2O)_4(OH)_2 + 2NH_4^+$	1	
			1	
		$Cu(H_2O)_4(OH)_2 + 4NH_3 \longrightarrow [Cu(NH_3)_4(H_2O)_2]^{2+} + 2OH^- + 2H_2O$	1	
	(c)	$ [Cu(NH_3)_4(H_2O)_2]^{2+} + 2H_2NCH_2CH_2NH_2 \longrightarrow [Cu(H_2NCH_2CH_2NH_2)_2(H_2O)_2]^{2+} + 4NH_3 $	1	
	(d)	Cu–N bonds formed have similar enthalpy / energy to Cu–N bonds broken	1	
		And the same number of bonds broken and made	1	
	(e)	3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive		
		Therefore, the free-energy change is negative	1	
		M2 can only be awarded if M1 is correct	1	
2.	(a)	Variable oxidation state	1	[11]
		eg Fe(II) and Fe (III)		
		Any correctly identified pair Allow two formulae showing complexes with different oxidation states even if oxidation state not given		
		(Characteristic) colour (of complexes)	1	
			1	

	eg Cu²+ <u>(</u> á	a <u>q)</u> / [Cu(H ₂ O) ₆] ²⁺ is blue Any correct ion with colour scores M3 and M4 Must show (aq) or ligands OR identified coloured compound e.g. CoCO ₃)	1
(b)	Tetrahed	ral	1
	[CuCl ₄] ^{2–}	/ [CoCl ₄] ^{2–} Any correct complex (Note charges must be correct)	1
	Square planar		1
	(NH ₃) ₂ Pt(Cl ₂ Any correct complex	1
	Linear	Do not allow linear planar	1
	[Ag(NH ₃) ₂]+		
		[AgCl ₂] ⁻ etc	1
(c)	(i) [Ca($(H_2O)_6]^{2+}$ + EDTA ⁴⁻ \rightarrow [CaEDTA] ²⁻ + 6H ₂ O If equation does not show increase in number of moles of particles CE = 0/3 for (c)(ii) If no equation, mark on	1
	(ii) 2 m	ol of reactants form 7 mol of products Allow more moles/species of products Allow consequential to (c)(i)	I
	The	erefore disorder increases	1
	Ent	ropy increases / +ve entropy change / free-energy change is negative	1
	(iii) Mol	es EDTA = 6.25 × 0.0532 / 1000 = (3.325 × 10 ⁻⁴)	1

	Moles of Ca ²⁺ in 1 dm ³ = $3.325 \times 10^{-4} \times 1000 / 150 = (2.217 \times 10^{-3})$		
	Mark is for M1 × 1000 / 150 OR M1 × 74.1		
	If ratio of Ca ²⁺ : EDTA is wrong or 1000 / 150 is wrong, CE and can score M1 only		
	This applies to the alternative	1	
	Mass of Ca(OH) ₂ = 2.217 × 10^{-3} × 74.1 = 0.164 g		
	M1 × 74.1 × 1000 / 150		
	Answer expressed to 3 sig figs or better		
	Must give unit to score mark		
	Allow 0.164 to 0.165		
		1	
			[17]
(a)	Same phase/state		
. ,		1	
(b)	Because only exist in one oxidation state		
(6)	Allow do not have variable oxidation states		
		1	
(c)	$2I^{-} + S_2O_8^{2-} \rightarrow I_2 + 2SO_4^{2-}$		
	Ignore state symbols		
	Allow multiples	1	
		1	
(d)	Both (ions)have a negative charge		
	Or both have the same charge		
	Or (ions) repel each other		
	Do not allow both molecules have the same charge (contradiction)	1	
		1	
(e)	$2Fe^{2+} + S_2O_8^{2-} \rightarrow 2Fe^{3+} + 2SO_4^{2-}$		
		1	
	$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$		
		1	
	Equations can be in any order		
	Desitive and pagetive (ione) (appecitely charged (ione)		
	Positive and negative (ions)/oppositely charged (ions)		
	Mark independently	1	
		•	
(f)	Equations 1 and 2 can occur in any order		
	Allow idea of Fe^{3+} converted to Fe^{2+} then Fe^{2+} converted back to		
	Fe ³⁺		
		1	101
			[8]

3.

1	(\mathbf{a})	(i)	An atom ion or molecule which can denote a long electron pair	
	(a)	(i)	An atom, ion or molecule which can donate a lone electron pair	1
		(ii)	A central metal ion/species surrounded by co-ordinately bonded ligands or ion in which co-ordination number	
			exceeds oxidation state	1
		(iii)	The number of co-ordinate bonds formed to a central metal ion	•
		. ,	or number of electron pairs donated or donor atoms	1
	(b)	(i)	Allow the reverse of each substitution	
			$[Co(H_2O)_6]^{2+} + 6NH_3 \rightarrow [Co(NH_3)_6]^{2+} + 6H_2O$	
			Complex ions	_
			Balanced	1
				1
			Allow partial substitution	
		(ii)	$[Co(H_2O)_6]^{2+} + 4Cl^- \rightarrow CoCl^{\frac{2-}{4}} + 6H_2O$	
			Complex ions	1
			Balanced	
			or H_2O or NH_3 or $C_2O_4^{2-}$ by CI	
				1
	eg.	(iii)	$[\mathrm{Co}(\mathrm{H}_{2}\mathrm{O})_{6}]^{2+} + 3\mathrm{C}_{2}\mathrm{O}_{4}^{2-} \rightarrow [\mathrm{Co}(\mathrm{C}_{2}\mathrm{O}_{4})_{3}]^{4-} + 6\mathrm{H}_{2}\mathrm{O}$	
			Complex ions	1
			Balanced	
			Allow all substitution except	1
			(i) NH_3 by H_2O	
			(ii) more than 2C ^{r} substituted for NH ₃ or H ₂ O	
	eg.	(iv)	$[\operatorname{Co}(\operatorname{H}_2\operatorname{O})_6]^{2+} + \operatorname{EDTA}^{4-} \rightarrow [\operatorname{Co}(\operatorname{EDTA})]^{2-} + 6\operatorname{H}_2\operatorname{O}$	
			Complex ions	1
			Balanced	1
			or H ₂ O or NH ₃ by $C_2 O_4^{2-}$ and NH ₃ or CI ⁻ by EDTA ⁴⁻	
			$c_1 c_2 c_1 c_1 c_3 c_2 c_4$ and $c_1 c_3 c_1 c_7 c_7 c_7 c_7 c_7 c_7 c_7 c_7 c_7 c_7$	1

4.

1

www.accesstuition.com

	(c)	(i)	[Fe(H ₂ O) ₆] ²⁺		
				1	
		(ii)	$Fe(OH)_2$ or $Fe(OH)_2(H_2O)_x$ where $x = 0$ to 4		
				1	
		(iii)	Fe^{2+} is oxidised to Fe^{3+} or $Fe(OH)_3$	1	
			Du oversen in the cir	1	
			By oxygen in the air	1	
					[15]
5.	(a)	[Ar]	4s ² 3d ⁷ or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷		
			Allow 4s and 3d in either order	1	
		۲۸ "۱	$2d^{7} = 4a^{2} 2a^{2} 2a^{2$	-	
		[AI]	3d ⁷ or 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷	1	
		Any	3		
		Varia	able oxidation state		
		Acta	as catalysts		
		Forr	n complexes		
		Forr	n coloured ions/compounds		
				3	

(b)	<u>Two atoms</u> that each donate a lone pair (of electrons) / coordinate bonds from <u>two atoms</u>	
		1
	Formula of ethane-1,2- diamine: $NH_2CH_2CH_2NH_2$	
	M2 gained from equation or structure	1
		1
	$[Co (H_2O)_6]^{2+} + 3NH_2CH_2CH_2NH_2 \longrightarrow [Co(NH_2CH_2CH_2NH_2)_3]^{2+} + 6H_2O$	
	Equation must be balanced inc charges	
	Allow en or $C_2H_8N_2$ in equation for ethane-1,2-diamine	1
	There is an increase in the number of particles / the reaction goes	
	from 4 moles to 7 moles	
	Allow increase number of molecules/moles. Allow numbers that match an incorrect equation	
		1
	Disorder/entropy increases / Δ S is positive	
		1

2+

ΔG negative

 $Or \begin{bmatrix} H_2 & H_2 & H_1 & H_2 & H_2 & H_1 & H_2 &$

Mark for correct structure (ignore charges -even if wrong)

1

1