

A-Level Chemistry

pH Curves and Titrations

Mark Scheme

Time available: 61 minutes Marks available: 53 marks

www.accesstuition.com

Mark schemes

	(-)		
1.	(a)		
		Allow	
		$[H_2O]$ is (very) large in comparison (to $[H^+]$ and $[OH^-]$)	
		or [H_2O] is incorporated in K_w	
		or $K_w = K_c[H_2O]$	
		or the equilibrium lies <u>very</u> much to the left.	
		Ignore water has negligible dissociation	
		Ignore $[H_2O] = 1$ or $[H_2O]$ is very small 1	
			1
	(b)	M1 Equilibrium is endothermic (in forward direction)	
			1
		M2 Equilibrium shifts to the RHS to minimise/oppose temperature increase	
		Ignore more H ⁺ and OH ⁻ formed	
			1
	(c)	M1 $pH = -log_{10}[H^+]$	
	(•)	$M1 \text{ Allow } pH = -\log[H^+]$	
			1
		M2 $[H^+] = \sqrt{548 \times 10^{-14}} (= 2.34 \times 10^{-7})$	
		$M2 [H+12 - 5.49 \times 10^{-14}]$	
		10/2 [11] = 3.48 × 10	1
		$M3 pH = -log_{10} 2.34 \times 10^{-1} = 6.63$	
		$M3 \ pH = -log_{10} \ M2$	1
			1
		M4 $[H^+] = [OH^-]$	
		Or Dispersiption of each water malegula gives and Ht and and OHT	
		M4 Allow equal amounts of H^{+} and OH^{-}	1
			1
	(d)	5.55	
		Allow 5.5 to 5.6	
			1

(e)	Different solutions must not contaminate each other				
	pH of previous solution doesn't contaminate new solution				
	or				
	To wash off any residual solution/substance (which could interfere with the reading)				
	Ignore to make neutral/neutralise				
	Ignore so as not to affect concentrations	1			
(f)	To avoid missing the end point				
	Or				
	(Very little pH change per cm ³ added at start) large change in pH (near end point)	1			
(g)	All have a colour change/pH range within the <u>steep/vertical</u> part of the titration curve	_			
	Colour change/pH range between pH 3 and 11	1			
(h)	M1 Amount of $OH^- = 36.25 \times 0.200 \div 1000 = 7.25 \times 10^{-3} \text{ mol}$ Amount of $H^+ = 25.0 \times 0.150 \div 1000 = 3.75 \times 10^{-3} \text{ mol}$	1			
	M2 Amount of excess $OH^- = 7.25 \times 10^{-3} - 3.75 \times 10^{-3} = 3.50 \times 10^{-3} \text{ mol}$	1			
	M3 $[OH^{-}] = (3.50 \times 10^{-3}) \div (61.25 \times 10^{-3}) (= 5.71 \times 10^{-2} \text{ mol})$				
	$M3 [OH^{-}] = (M2) \div (61.25 \times 10^{-3})$	1			
	M4 $[H^+] = 1.00 \times 10^{-14} \div 5.71 \times 10^{-2} = 1.75 \times 10^{-13}$				
	$M4 [H^+] = 1.00 \times 10^{-14} \div M3$	1			
	M5 pH = 12.76				
	M5 Allow $pH = 12.8$ M5 $pH = -log_{10}(M4)$				
	Alternative Method				
	M4 p OH = 1.24				
	<i>M</i> 5 pH = 14 - 1.24 = 12.76	1			

(a) **M1**: [H⁺] = [OH⁻]

M1: accept equal number/amounts of H⁺ and OH[−]

		1	
	M2 : [H ⁺] (= 10^{-pH}) = 2.138 × 10^{-7}		
	M2 : allow 2.14 × 10^{-7}		
		1	
	M3 : $K_w = [H^+]^2$ or $(2.138 \times 10^{-7})^2$		
	M3 : allow (M2) ²	1	
	M_{4} $K = 4.57 + 40^{-14}$	1	
	M4 : $n_W = 4.57 \times 10^{-14}$		
	M4 is dependent on (an answer) ² in M3		
		1	
(b)	View with Figure X (ie graph) as they may show working there.		
	Ignore calculations of mols of salt or acid		
	M1 : Determines volume at half equivalence (= $\frac{19.5}{2}$ cm ³) = 9.75 (cm ³)		
	M1 : Allow reading on graph to be from 19.4 to 19.7 giving M1 = 9.7 to 9.85		
		1	
	M2 : pH = 4.80 to 4.95		
	M2: Reads off pH at half equivalence	1	
	M3 : K_{2} (= 10 ^{-pH}) = 10 ^{-4.9} = 1.26 × 10 ⁻⁵		
	M3 : Allow 1.12 × 10 ⁻⁵ to 1.58 x 10 ⁻⁵		
	M3: Allow 2sf or more		
		1	
	Alternative method		
	M1: pH of pure acid = 3		
	M2 : $K_{a} = (10^{-3})^{2} / 0.080$		
	M3 : = 1.25 × 10 ⁻⁵		
	Alternative M1 if calculation incorrect:		
	Allow $pH = pK_a$ or $[H^+] = K_a$ at <u>half equivalence</u>		
(c)	cresolphthalein		
		1	

(d)	M1: $\begin{array}{c} K_{a} = \underbrace{[H^{+}][X]}_{[HX]} \text{ or } \begin{bmatrix} H^{+}] = \underbrace{K_{a} \times [HX]}_{[X^{-}]} \\ \hline [X^{-}] \end{array}$		
	M1: ^{allow} [H [*]] = <u>K_a x [acid]</u> [salt]	1	
	M2 : amount of HX = 0.0500 mol	1	
	M3 : amount of HX after add ⁿ of KOH = $0.05 - 3 \times 10^{-4} = 0.0497$ mol M3 : = M2 - 3 × 10 ⁻⁴	1	
	M4 : amount of KX after add ⁿ of KOH = 0.0136 + 3×10^{-4} = 0.0139 mol	1	
	M5: $\begin{bmatrix} H^+ \end{bmatrix} = \left(\frac{1.41 \times 10^{-5} \times 0.0497}{0.0139} \right) = \frac{5.04(15) \times 10^{-5}}{0.0139}$	1	
	MO : $pH = -log_{10} 5.04(15) \times 10^{\circ} = 4.30$		
		1	
	If no attempt at M3 and M4 max 2 marks		
	If M3 or M4 attempted using 3×10^{-4} max 4 (M1 , M2 , M3 or M4 and M6)		
(e)	ratio $\frac{[HX]}{[X^-]}$ <i>Allow inverse expression</i>		
		1	[15]
(a)	7–10.2 any range (i.e. 2 values) within this range	1	
(b)	$K_{a} = \frac{[H^{+}][X^{-}]}{[HX]}$		
	ALLOW H_3O^+ for H^+ and A for X		
	IGNORE [H ⁺] ² /[HX]		
	must be square brackets		
	IGNURE STATE SYMDOIS	1	
(c)	Amount NaOH = $(24.0 \times 0.100)/1000 = 2.40 \times 10^{-3}$ mol (= amount HX)		
	Conc HX = $2.40 \times 10^{-3}/0.025 = 0.0960 \text{ mol dm}^{-3}$ ecf for M1/0.025		

3.

www.accesstuition.com

(d) $(K_a = 2.62 \times 10^{-5} = [H^+]^2/0.0960)$

4.

	$[H^+] = \sqrt{(2.62 \times 10^{-5} \times 0.0960)} (= 1.59 \times 10^{-3} \text{ mol dm}^{-3})$ ecf from part (c) $[H^+] = \sqrt{(2.62 \times 10^{-5} \times ans \text{ to part (c)})}$ From alternative data $[H^+] = \sqrt{(2.62 \times 10^{-5} \times 0.600)} (= 3.96 \times 10^{-3} \text{ mol dm}^{-3})$		
	$(pH = -log 1.59 \times 10^{-3} =) 2.80$ (must be 2 or more dp)		
	pH = 2.40 (must be 2 or more dp) M2 dependent on a calculation of [H+]	1	
(e)	(pH at half-neutralisation = pK_a)		
	= -log 2.62 × 10 ⁻⁵ = 4.58 (must be 2 or more dp) ALLOW 1dp if already penalised in part (d)	1	
(f)	Both points plotted correctly and line touches both points ecf from (d) and (e) within 1 small square	1	
	Line steeper at start then levels (to show buffering) Mark independently	1	
(a)	Formula of any strong acid (e.g. HCI)	1	[9]
	Formula of a weak alkali (e.g. NH ₃)	1	
(b)	Place a fixed volume of alkali in a flask or beaker	1	
	Add acid in small portions from a burette	1	
	Stir and use a pH meter to record the pH after each addition of acid	1	
(c)	Repeat the experiment with each indicator	1	
	Select the indicator that changes colour rapidly when the pH changes from about 7 to 4	1	[7]

(a)	(i)	G	1	
	(ii)	F	1	
	(iii)	Н	-	
(b)	(i)	cresol purple	1	
. ,	(;;)		1	
	(11)	both colours needed and must be in this order	1	
	(iii)	yellow or pale yellow		
		Not allow any other colour with yellow	1	[6]
	(a) (b)	 (a) (i) (ii) (iii) (b) (i) (ii) (iii) 	 (a) (i) G (ii) F (iii) H (b) (i) cresol purple (ii) yellow to red both colours needed and must be in this order (iii) yellow or pale yellow Not allow any other colour with yellow 	(a) (i) G 1 (ii) F 1 (iii) H 1 (b) (i) cresol purple 1 (ii) yellow to red 1 (iii) yellow to red 1 (iii) yellow to red 1 (iii) yellow or pale yellow 1 (iii) yellow or pale yellow 1 (iii) yellow or pale yellow 1