

A-Level Chemistry

pH Curves and Titrations

Question Paper

Time available: 61 minutes Marks available: 53 marks

1. This question is about pH .

Pure water dissociates slightly.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta H=+57 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

The equilibrium constant, $K_{\mathrm{c}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
The ionic product of water, $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
(a) Explain why $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is not shown in the K_{w} expression.
\qquad
\qquad

Table 1 shows how $K_{\text {w }}$ varies with temperature.
Table 1

Temperature $/{ }^{\circ} \mathrm{C}$	$K_{\mathrm{w}} / \mathrm{mol}^{2} \mathrm{dm}^{-6}$
10	2.93×10^{-15}
20	6.81×10^{-15}
25	1.00×10^{-14}
30	1.47×10^{-14}
50	5.48×10^{-14}

(b) Explain why the value of K_{w} increases as the temperature increases.
\qquad
\qquad
\qquad
\qquad
(c) Give the expression for pH .

Calculate the pH of pure water at $50^{\circ} \mathrm{C}$
Give your answer to 2 decimal places.
Explain why water is neutral at $50^{\circ} \mathrm{C}$
Expression \qquad
Calculation
pH \qquad
Explanation \qquad
\qquad

A pH meter is calibrated using a calibration graph.
To create the calibration, the pH meter is used to measure the pH of separate solutions, each with a known, accurate pH .

Figure 1 shows the calibration graph.
Figure 1

(d) Use Figure 1 to give the true pH value when the pH meter reading is 5.6
\qquad
(e) Suggest why the pH probe is washed with distilled water between each of the calibration measurements.
\qquad
\qquad
(1)
(f) The calibrated pH meter is used to monitor the pH during a titration of hydrochloric acid with sodium hydroxide.

Explain why the volume of sodium hydroxide solution added between each pH measurement is smaller as the end point of the titration is approached.
\qquad
\qquad

Figure 2 shows the pH curve for a titration of hydrochloric acid with sodium hydroxide solution.
Figure 2

Table 2 shows data about some indicators.
Table 2

Indicator	$\mathbf{p H}$ range	Colour at low pH	Colour at high pH
Bromocresol green	$3.8-5.4$	yellow	blue
Phenol red	$6.8-8.4$	yellow	red
Thymolphthalein	$9.3-10.5$	colourless	blue

The student plans to do the titration again using one of the indicators in Table 2 to determine the end point.
(g) State why all three of the indicators in Table 2 are suitable for this titration.
\qquad
\qquad
(h) $36.25 \mathrm{~cm}^{3}$ of $0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide solution are added to $25.00 \mathrm{~cm}^{3}$ of 0.150 $\mathrm{mol} \mathrm{dm}{ }^{-3}$ hydrochloric acid.

Calculate the pH of the final solution at $25{ }^{\circ} \mathrm{C}$
$K_{\mathrm{w}}=1.00 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ at $25^{\circ} \mathrm{C}$
pH \qquad
(5)
(Total 16 marks)
2. This question is about different pH values.
(a) For pure water at $40^{\circ} \mathrm{C}, \mathrm{pH}=6.67$

A student thought that the water was acidic.
Explain why the student was incorrect.
Determine the value of K_{w} at this temperature.
Explanation \qquad
\qquad
K_{w} \qquad $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
(b) Sodium hydroxide solution was added gradually from a burette to $25 \mathrm{~cm}^{3}$ of $0.080 \mathrm{~mol} \mathrm{dm}^{-3}$ propanoic acid at $25^{\circ} \mathrm{C}$
The pH was measured and recorded at regular intervals.
The results are shown in the diagram.

Use the diagram above to determine the value of K_{a} for propanoic acid at $25^{\circ} \mathrm{C}$
Show your working.
(c) Suggest which indicator is the most appropriate for the reaction in part (b)? Tick (\checkmark) one box.

Indicator	pH range	Tick (\checkmark) one box
methyl orange	$3.1-4.4$	
bromothymol blue	$6.0-7.6$	
cresolphthalein	$8.2-9.8$	
indigo carmine	$11.6-13.0$	

(d) A student prepared a buffer solution by adding 0.0136 mol of a salt KX to $100 \mathrm{~cm}^{3}$ of a $0.500 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of a weak acid HX and mixing thoroughly.

The student then added $3.00 \times 10^{-4} \mathrm{~mol}$ of potassium hydroxide to the buffer solution.
Calculate the pH of the buffer solution after adding the potassium hydroxide.
For the weak acid HX at $25^{\circ} \mathrm{C}$ the value of the acid dissociation constant, $K_{\mathrm{a}}=1.41 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.

Give your answer to two decimal places.
pH \qquad
(e) A buffer solution has a constant pH even when diluted.

Use a mathematical expression to explain this.
3. A $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of sodium hydroxide was gradually added to $25.0 \mathrm{~cm}^{3}$ of a solution of a weak acid, HX , in the presence of a suitable indicator.

A graph was plotted of pH against the volume of sodium hydroxide solution, as shown in the figure below.

The first pH reading was taken after $20.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution had been added.
The acid dissociation constant of $\mathrm{HX}, K_{\mathrm{a}},=2.62 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$

(a) The pH range of an indicator is the range over which it changes colour.

Suggest the pH range of a suitable indicator for this titration.
\qquad
(b) Give the expression for the acid dissociation constant of HX.
$K_{\mathrm{a}}=$
(c) Calculate the concentration of HX in the original solution.

Concentration \qquad $\mathrm{mol} \mathrm{dm}^{-3}$
(d) Calculate the pH of the solution of HX before the addition of any sodium hydroxide.
(If you were unable to calculate a value for the concentration of HX in part (c) you should use a value of $0.600 \mathrm{~mol} \mathrm{dm}^{-3}$ in this calculation. This is not the correct value.)
pH of HX \qquad
(e) Calculate the pH of the solution when half of the acid has reacted.
pH of solution \qquad
(f) Plot your answers to part (d) and part (e) on the grid in the figure above.

Use these points to sketch the missing part of the curve between 0 and $20 \mathrm{~cm}^{3}$ of NaOH solution added.
4. The graph was obtained from an experiment in which an acid was reacted with an alkali.

(a) Suggest possible formulae for an acid and an alkali that could be used to produce the curve shown in the graph.

Acid \qquad
Alkali \qquad
(b) Suggest briefly a practical procedure that a student could use to obtain data from which the curve in the graph could be plotted.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The student was provided with samples of three different indicators.

Suggest how the practical procedure in part (b) could be refined by the student to identify the most suitable indicator.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Titration curves, labelled E, F, G and H, for combinations of different aqueous solutions of acids and bases are shown below.

All solutions have concentrations of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$.

(a) In this part of the question, write the appropriate letter in each box.

From the curves $\mathbf{E}, \mathbf{F}, \mathbf{G}$ and \mathbf{H}, choose the curve produced by the addition of
(i) sodium hydroxide to $25 \mathrm{~cm}^{3}$ of ethanoic acid \square
(ii) ammonia to $25 \mathrm{~cm}^{3}$ hydrobromic acid \square
(iii) hydrochloric acid to $25 \mathrm{~cm}^{3}$ of potassium hydroxide \square
(b) The table shows information about some acid-base indicators.

Indicator	pH range	Lower pH colour	Higher pH colour
pentamethoxy red	$1.2-3.2$	violet	colourless
naphthyl red	$3.7-5.0$	red	yellow
4-nitrophenol	$5.6-7.0$	colourless	yellow
cresol purple	$7.6-9.2$	yellow	purple

(i) Which indicator in the table could be used for the titration that produces curve \mathbf{E} but not for the titration that produces curve \mathbf{F} ?

Tick (\checkmark) one box.
pentamethoxy red

naphthyl red

4-nitrophenol
(ii) Give the colour change at the end point of the titration that produces curve \mathbf{H} when naphthyl red is used as the indicator.
\qquad
(iii) A beaker contains $25 \mathrm{~cm}^{3}$ of a buffer solution at $\mathrm{pH}=6.0$

Two drops of each of the four indicators in the table are added to this solution.
State the colour of the mixture of indicators in this buffer solution.
You should assume that the indicators do not react with each other.
\qquad

