M1.(a) Saturated - single bonds only / no double bonds

Hydrocarbon - contains carbon and hydrogen (atoms) only
(b) $\mathrm{C}_{16} \mathrm{H}_{34}+16.5 \mathrm{O}_{2} \longrightarrow 16 \mathrm{CO}+17 \mathrm{H}_{2} \mathrm{O}$

Allow multiples
(c) (On combustion) SO_{2} produced

Allow equation to produce SO_{2}. Ignore sulfur oxides.

Which causes acid rain
If formula shown it must be correct
M2 is dependent on M1. But if M1 is sulfur oxides, allow M2.
For M2 allow consequence of acid rain or SO_{2}.
Ignore greenhouse effect and toxic
(d) (i) $\mathrm{C}_{16} \mathrm{H}_{34} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+\mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{C}_{3} \mathrm{H}_{6}$

Allow multiples
(ii) polypropene / propan(-1 or 2-)ol / propane(-1,2-)diol / isopropanol / propanone / propanal

Accept alternative names
Ignore plastic and polymer
(iii)

(e)

(f) 2,4-dichloro-2,4-dimethylhexane

Only but ignore punctuation

M2.(a) 2,6-diaminohexanoic acid
Ignore additional , or - or spaces.
(b) (i)

$\left(2 \mathrm{Cl}^{-}\right)$
$N B$ both N must be protonated.
Allow $-\mathrm{NH}_{3}^{+}$allow $\mathrm{CO}_{2} \mathrm{H}$ Allow $-{ }^{+} \mathrm{H}_{3} \mathrm{~N}$.
Penalise - $\mathrm{C}_{4} \mathrm{H}_{8}$ - here.
(ii)

$\left(\mathrm{Na}^{+}\right)$
Allow CO_{2}^{-}.
Allow $-\mathrm{H}_{2} \mathrm{~N}$.
Allow -COONa but penalise O-Na bond shown.
(iii)

Allow $\mathrm{CO}_{2} \mathrm{CH}_{3}$.
Allow $-\mathrm{NH}_{3}^{+}$or $-\mathrm{H}_{2} \mathrm{~N}$.
(c)

1 for displayed formula of fragment ion.
1 for molecular ion of alanine AND radical.
Allow molecular ion without brackets and fragment ion in brackets with outside +.
Allow dot anywhere on radical.
Allow $\left[\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}\right]{ }^{+}$for molecular ion.
(d)

OR

OR

Dipeptide, not repeating unit /.
Allow $\mathrm{CO}_{2} \mathrm{H}$ Allow $-\mathrm{H}_{2} \mathrm{~N}$.
Allow -CONH-
(e) M1 In acid lysine has double positive or more positive charge

M2 (Lysine ion) has greater affinity / greater attraction / adheres better / sticks
better to polar / stationary phase

M2 only scores after a correct M1.
Ignore greater retention time.

M3.(a)

(b)

(c) Stage 1: consider the groups joined to right hand carbon of the $\mathrm{C}=\mathrm{C}$ bond Extended response
Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.

Consider the atomic number of the atoms attached
M1 can be scored in stage 1 or stage 2

C has a higher atomic number than H , so $\mathrm{CH}_{2} \mathrm{OH}$ takes priority

Stage 2: consider the groups joined to LH carbon of the $\mathrm{C}=\mathrm{C}$ bond Both groups contain C atoms, so consider atoms one bond further away
C, (H and H) from ethyl group has higher atomic number than H , (H and H) from methyl group, so ethyl takes priority

Stage 3: conclusion
The highest priority groups, ethyl and $\mathrm{CH}_{2} \mathrm{OH}$ are on same side of the $\mathrm{C}=\mathrm{C}$ bond so the isomer is Z

Allow M5 for correct ECF conclusion using either or both wrong priorities deduced in stages 1 and 2

The rest of the IUPAC name is 3-methylpent-2-en-1-ol
(d) Moles of maleic acid $=10.0 / 116.0=8.62 \times 10^{-2}$

AND mass of organic product expected $=\left(8.62 \times 10^{-2}\right) \times 98.0=8.45 \mathrm{~g}$
Or moles of organic product formed $=6.53 / 98.0=6.66 \times 10^{-2}$
$\%$ yield $=100 \times 6.53 / 8.45$
OR $=100 \times\left(6.66 \times 10^{-2}\right) /\left(8.62 \times 10^{-2}\right)$
$=77.294=77.3 \%$
AND statement that the student was NOT correct

M4.(a) Crude oil OR petroleum
Not petrol.

Fractional distillation / fractionation

Not distillation alone.
(b) $\quad \mathrm{C}_{12} \mathrm{H}_{26}+12.5 \mathrm{O}_{2} \longrightarrow 12 \mathrm{CO}+13 \mathrm{H}_{2} \mathrm{O}$

Allow balanced equations that produce CO_{2} in addition to CO.
Accept multiples.
(ii) $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$

Allow multiples.
(d) (i) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

$$
\text { Allow } C_{x} H_{2 x+2}
$$

$\mathrm{CnH} 2 \mathrm{n}+2$

Allow $\mathrm{CxH} 2 \mathrm{x}+2$

(ii) $\mathrm{C}_{12} \mathrm{H}_{26} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{14}+\mathrm{C}_{6} \mathrm{H}_{12}$ Only.
$\mathrm{C}_{3} \mathrm{H}_{7}$
Only.

Zeolite / aluminosilicate(s)
 Ignore aluminium oxide.

(iii) Larger molecule / longer carbon chain / more electrons / larger surface area

More / stronger van der Waals' forces between molecules
Allow dispersion forces / London forces / temporary induced dipole-dipole forces between molecules. If breaking bonds, $C E=0 / 2$.
(e) 2,2,3,3,4,4-hexamethylhexane

Only.
Ignore punctuation.

Chain
Ignore branch(ed).
(f) $\quad \mathrm{Cl}_{2}$

Only.

$\mathrm{Cl}-\mathrm{Cl}$
Not CL_{2} or Cl 2 or CL 2 or Cl^{2} or CL^{2}. Ignore Chlorine.

M5.(a) 2,2,4-trimethylpentane
(b) 5
(c) $\mathrm{C}_{20} \mathrm{H}_{42} \longrightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{3} \mathrm{H}_{6}+3 \mathrm{C}_{2} \mathrm{H}_{4}$
(d) Mainly alkenes formed
(e) 4 (monochloro isomers)

(f)

(g) $\quad \mathrm{C}_{8} \mathrm{H}_{17}{ }^{35} \mathrm{Cl}=96.0+17.0+35.0=148.0$ and $\mathrm{C}_{8} \mathrm{H}_{17}{ }^{37} \mathrm{Cl}=96.0+17.0+37.0=150.0$

Both required
M_{r} of this $\left.\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Cl} \frac{(1.5}{2.5} \times 148.0\right)+\frac{(1.0}{2.5} \times 150.0\right)=148.8$
$\frac{24.6}{12} \quad \frac{2.56}{1} \quad \frac{72.8}{35.5}=2.05: 2.56: 2.05$
Simplest ratio $=\frac{2.05}{2.05}: \frac{2.56}{2.05}: \frac{2.05}{2.05}$
$=\quad 1: 1.25: 1$

Whole number ratio $(\times 4)=4: 5: 4$
$\mathrm{MF}=\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{Cl}_{8}$

