M1. (a)	(a) Saturated – single bonds only / no double bonds				
		Hydrocarbon – contains carbon and hydrogen (atoms) <u>only</u>	1		
	(b)	$C_{16}H_{34} + 16.5O_2 \xrightarrow{\longrightarrow} 16CO + 17H_2O$ Allow multiples	1		
	(c)	(On combustion) SO ₂ produced Allow equation to produce SO ₂ . Ignore sulfur oxides.	1		
		Which causes acid rain If formula shown it must be correct M2 is dependent on M1. But if M1 is sulfur oxides, allow M2. For M2 allow consequence of acid rain or SO ₂ . Ignore greenhouse effect and toxic	1		
	(d)	(i) $C_{16}H_{34} \longrightarrow C_8H_{18} + C_2H_4 + 2C_3H_6$ Allow multiples	1		
		 (ii) polypropene / propan(-1 or 2-)ol / propane(-1,2-)diol / isopropanol / propanone / propanal Accept alternative names Ignore plastic and polymer 	1		

(iii)

[10]

M2.(a) <u>2,6-diaminohexanoic acid</u> *Ignore additional , or – or spaces.*

(b) (i) $H_{3}N(CH_{2})_{4}-C-COOH$ $+NH_{3}$ (2Cl⁻) *NB both N must be protonated. Allow -NH₃⁺ allow CO₂H Allow -⁺H₃N.*

Penalise – C₄H₅ – here.

1

Allow CO_2^- . Allow $-H_2N$. Allow -COONa but penalise O-Na bond shown.

1

1

2

(iii) H₂N(CH₂)₄-CCOOCH₃ NH₂ Allow CO₂CH₃. Allow -NH₃⁺ or -H₂N.

(c)

1 for <u>displayed formula</u> of fragment ion. 1 for molecular ion of alanine AND radical. Allow molecular ion without brackets and fragment ion in brackets with outside +. Allow dot anywhere on radical. Allow [C₃H₇NO₂]+^{*} for molecular ion.

(d)

OR

OR

Ignore greater retention time.

[9]

1

1

1

M3.(a)

2CH2OH

(b)

 (c) Stage 1: consider the groups joined to right hand carbon of the C=C bond Extended response Maximum of 5 marks for answers which do not show a sustained line of reasoning which is coherent, relevant, substantiated and logically structured.

Consider the atomic number of the atoms attached M1 can be scored in stage 1 or stage 2

	C has a higher atomic number than H, so CH₂OH takes priority	1
	Stage 2: consider the groups joined to LH carbon of the C=C bond	
	Both groups contain C atoms, so consider atoms one bond further away	1
	C, (H and H) from ethyl group has higher atomic number than H, (H and H) from methyl group, so ethyl takes priority	1
	Stage 3: conclusion	
	The highest priority groups, ethyl and CH ₂ OH are on same side of the C=C bond so the isomer is Z <i>Allow M5 for correct ECF conclusion using either or both</i> <i>wrong priorities deduced in stages 1 and 2</i>	1
	The rest of the IUPAC name is 3-methylpent-2-en-1-ol	1
(d)	Moles of maleic acid = 10.0 / 116.0 = 8.62 × 10 ⁻²	
	AND mass of organic product expected = $(8.62 \times 10^{-2}) \times 98.0 = 8.45$ g	
	Or moles of organic product formed = $6.53 / 98.0 = 6.66 \times 10^{-2}$	1
	% yield = 100 × 6.53 / 8.45	
	OR = $100 \times (6.66 \times 10^{-2}) / (8.62 \times 10^{-2})$	
	= 77.294 = 77.3%	
	AND statement that the student was NOT correct	1

[10]

M4.(a) Crude oil OR petroleum

Not petrol.

Fractional distillation / fractionation Not distillation alone.

1

1

1

1

1

1

1

(b) $C_{12}H_{26} + 12.5O_2 \longrightarrow 12CO + 13H_2O$ Allow balanced equations that produce CO_2 in addition to CO. Accept multiples.

(c) (i) M1 Nitrogen and oxygen (from air) <u>react / combine</u> / allow a correct equation
 If nitrogen from petrol / paraffin / impurities CE = 0 / 2.

M2 at high temperatures Allow temperatures above 1000 °C or spark. Not just heat or hot. M2 dependent on M1. But allow 1 mark for nitrogen and oxygen together at high temperatures.

- (ii) $2NO + O_2 \longrightarrow 2NO_2$ Allow multiples.
- (iii) $4NO_2 + 2H_2O + O_2 \longrightarrow 4HNO_3$ Allow multiples.

Allow C_xH_{2x+2}

CnH2n+2 Allow CxH2x+2

(ii) $C_{12}H_{26} \longrightarrow C_{6}H_{14} + C_{6}H_{12}$ Only.

1

1

C₃H7 Only.

1

1

1

1

Zeolite / aluminosilicate(s) Ignore aluminium oxide.

(iii) Larger molecule / longer carbon chain / more electrons / larger surface area

More / stronger <u>van der Waals' forces between molecules</u> *Allow dispersion forces / London forces / temporary induced dipole-dipole forces <u>between molecules.</u> If breaking bonds, CE = 0 / 2.*

(e) 2,2,3,3,4,4-hexamethylhexane Only. Ignore punctuation.

Chain

Ignore branch(ed).

1

(f)	Cl ₂	Only.		
	CI–CI	Not CL ₂ or Cl2 or CL2 or Cl ² or CL ² . Ignore Chlorine.	1	[16]
M5. (a)	2,2,4-trimet	hylpentane	1	
(b)	5		1	
(c)	$C_{20}H_{42}$ —	$\rightarrow C_8H_{18} + 2C_3H_6 + 3C_2H_4$	1	
(d)	Mainly alk	kenes formed	1	
(e)	4 (monoc	hloro isomers)	1	

(g)
$$C_{8}H_{17}{}^{35}CI = 96.0 + 17.0 + 35.0 = 148.0$$

and $C_{8}H_{17}{}^{37}CI = 96.0 + 17.0 + 37.0 = 150.0$
Both required

$$\frac{(1.5 \times 148.0) + (1.0 \times 150.0)}{2.5} = 148.8$$

(h)
$$\frac{24.6}{12}$$
 $\frac{2.56}{1}$ $\frac{72.8}{35.5} = 2.05 : 2.56 : 2.05$
Simplest ratio = $\frac{2.05}{2.05} : \frac{2.56}{2.05} : \frac{2.05}{2.05}$
= 1 : 1.25 : 1

Whole number ratio $(\times 4) = 4 : 5 : 4$

 $\mathsf{MF} = \mathsf{C}_{8}\mathsf{H}_{10}\mathsf{CI}_{8}$

1 [12]

1

1