M1. (a) Pentan-2-one
ONLY but ignore absence of hyphens
(b) Functional group (isomerism)

Both words needed
(c) (i)

Award credit provided it is obvious that the candidate is drawing the Z / cis isomer
The group needs to be CHOHCH_{3} but do not penalise poor $\mathrm{C}-\mathrm{C}$ bonds or absence of brackets around OH
Trigonal planar structure not essential
(ii) Restricted rotation (about the $\mathrm{C}=\mathrm{C}$)

OR
No (free) rotation (about the $\mathrm{C}=\mathrm{C}$)
(d)

M1 Tollens' (reagent) (Credit ammoniacal silver nitrate OR a description of making Tollens') (Do not credit $\mathrm{Ag}^{+}, \mathrm{AgNO}_{3}$ or $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }_{2}^{*}\right.$ or "the silver mirror test" on their own, but mark M2 and M3)	M1 Fehling's (solution) / Benedict's (Penalise $\mathrm{Cu}^{+}(\mathrm{aq})$ or CuSO_{4} but mark M2 and M3)
M2 silver mirror OR black solid or black precipitate	M2 Red solid/precipitate (Credit orange or brown solid)

M3 (stays) colourless	M3 (stays) blue
OR	OR
no (observed) change / no reaction	no (observed) change / no reaction

If M1 is blank $C E=0$, for the clip
Check the partial reagents listed and if M1 has a totally incorrect reagent, CE $=0$ for the clip
Allow the following alternatives
M1 (acidified) potassium dichromate(VI) (solution); mark on from incomplete formulae or incorrect oxidation state M2 (turns) green M3 (stays) orange / no (observed) change / no reaction
OR
M1 (acidified) potassium manganate(VII) (solution); mark on from incomplete formulae or incorrect oxidation state
M2 (turns) colourless
M3 (stays) purple / no (observed) change / no reaction In all cases for M3
Ignore "nothing (happens)"
Ignore "no observation"
(e) (i) Spectrum is for Isomer 1
or named or correctly identified
The explanation marks in (e)(ii) depend on correctly identifying Isomer 1.
The identification should be unambiguous but candidates should not be penalised for an imperfect or incomplete name. They may say "the alcohol" or the "alkene" or the "E isomer"
(ii) If Isomer 1 is correctly identified, award any two from

- (Strong / broad) absorption / peak in the range

3230 to $3550 \mathrm{~cm}^{-1}$ or specified value in this range or marked correctly on spectrum and
(characteristic absorption / peak for) $\underline{\mathrm{OH}}$ group /alcohol group

- No absorption / peak in range 1680 to $1750 \mathrm{~cm}^{-1}$ or absence marked correctly on spectrum

and
 (No absorption / peak for a) $\mathbf{C = O}$ group / carbonyl group / carbon-oxygen double bond

- Absorption / peak in the range 1620 to $1680 \mathrm{~cm}^{-1}$ or specified value in this range or marked correctly on spectrum

and

(characteristic absorption / peak for) $\mathbf{C = C}$ group
/ alkene / carbon-carbon double bond
If 6(e)(i) is incorrect or blank, $C E=0$
Allow the words "dip" OR "spike" OR "trough" OR "Iow transmittance" as alternatives for absorption.
Ignore reference to other absorptions e.g. C-H, C-O
(ii) fractional distillation or fractionation
(iii) contains only single bonds or has no double bonds
(credit 'every carbon is bonded to four other atoms' provided it does not contradict by suggesting that this will always be H)
(b) (i) the molecular formula gives the actual number of atoms of each
element/type in a molecule/hydrocarbon/compound/formula(penalise 'amount of atoms')(penalise 'ratio of atoms')
(ii) $\mathrm{C}_{14} \mathrm{H}_{30}$ only
(penalise as a contradiction if correct answer is accompanied by other structural formulae)
(iii) $\quad \mathrm{C}_{10} \mathrm{H}_{22}+51 / 2 \mathrm{O}_{2} \rightarrow 10 \mathrm{C}+11 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)
(c) (i) $1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$
(or double this equation)
(ii) Platinum or palladium or rhodium
(iii) $2 \mathrm{CO}+2 \mathrm{NO} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{N}_{2}$ or
$2 \mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$ or
(ignore extra O_{2} molecules provided the equation balances)
$\mathrm{C}+2 \mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2}$
(or half of each of these equations)
$\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{NO} \rightarrow 8 \mathrm{CO}_{2}+12 \frac{1}{2} \mathrm{~N}_{2}+9 \mathrm{H}_{2} \mathrm{O}$
(or double this equation)

M3. (a) - (Same) General formula/allow a named homologous series with its general formula

- Chemically similar/same (chemical) reactions
- Same functional group
- Trend in physical properties/eg inc bp as $M_{\text {r }}$ increases
- (Molecules) increase by $\mathrm{CH}_{2} / M_{\mathrm{r}}=14$
(b) Fractional distillation/fractionation/chromatography Allow GLC
(c) (Molecules/compounds/substances) with the same molecular formula/same number and type of atoms

Allow alkanes with same molecular formula
Allow same chemical formula in M1 $=0$ but can allow M2
but different structural formula/different displayed formula/different arrangement of atoms/different structures

Not different positions in space

2,4-dimethylhexane

M2 dependent on M1
$\mathrm{C}_{4} \mathrm{H}_{9}$
Ignore the absence of dash and/or commas
(d) less surface contact/less surface area/less polarisable molecule
so fewer/weaker/less Van der Waals'/vdw forces
Allow more spherical or fewer points of contact
Not smaller molecule/not more compact molecule/not shorter chain
Allow converse arguments
Must be comparative answer ie not just few VDW forces
QoL
Assume 'it' refers to the branched isomer

M4. (a) (Different) boiling points
Ignore mp's, references to imf, different volatilities
(b) (i) Compound which have the same molecular formula Accept same no and type of atom for M1
But If same (chemical) formula M1 $=0$ but allow M2 If empirical formula $C E=0 / 2$
but different structures/different structural formulae/different displayed formulae M2 dependent on M1
(ii) 3-methylbut-1-ene
only ignore commas and hyphens
(iii)

Allow any correct structure with a cyclic alkane
Do not allow

or

i.e with an H missing on one C
(c) $\mathrm{C}_{13} \mathrm{H}_{28}$
only

Making plastics/used to make polymers or polythene/used to make antifreeze/make ethanol/ripening fruit/any named additional polymer
not used as a plastic/polymer/antifreeze not just 'polymers' - we need to see that they are being made

1

M5. (a) General formula;
Chemically similar;
Same functional group;
Trend in physical properties eg inc bp as M_{r} increases;
Contains an additional CH_{2} group;
Any two points.
(b) (i)

All bonds and atoms must be shown.

$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Cl}$;

Allow any order of elements.
Do not allow EF consequential on their wrong displayed formula.
(ii) Same Molecular formula/ both $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{C}_{12}$ / same number and type of atoms;

Different structural formula/ different structure/ different displayed formula;

Not atoms or elements with same MF $C E=0$.
Allow different C skeleton.
If same chemical formula can allow M2 only.
M2 insufficient to say atoms arranged differently.
M2 consequential on M1.
(c) $M_{\mathrm{r}}=228$ for total reactants;

$\frac{155 \times 100}{228}$	$=67.98 \% ;$
	Allow 67.98 or 68.0 or 68%.

(d) (i) Bp increases with increasing (molecular) size/ increasing $M_{\text {/ }}$ increasing no of electrons/increasing chain length;

Atoms $C E=0$.

Increased VDW forces (between molecules) (when larger molecule)/ bigger IMFs;

QWC
Not dipole-dipole or hydrogen bonds.
If VDW between atoms in M2 CE $=0$.
(ii) Fractional distillation/ fractionation/ GLC/chromatography;

1
[11]

M6. (a) (i) single (C-C) bonds only/no double ($\mathrm{C}=\mathrm{C}$) bonds

Allow all carbon atoms bonded to four other atoms
Single C-H bonds only $=0$
$C=H C E$
C and H (atoms) only/purely/solely/entirely
Not consists or comprises
Not completely filled with hydrogen
CH molecules $=$ CE
Element containing C and $H=C E$
(ii) $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$

Formula only
$\mathrm{C}_{x} \mathrm{H}_{2 \times 2}$
(b) (i) $\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Accept multiples
Ignore state symbols
(ii) gases produced are greenhouse gases/contribute to Global warming/effect of global warming/climate change

Allow CO_{2} or water is greenhouse gas/causes global warming
Acid rain/ozone CE $=0$
(c) carbon

Allow C

 Allow soot(d) (i) $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{C}_{4} \mathrm{H}_{8}$

OR

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+2 \mathrm{C}_{2} \mathrm{H}_{4} \\
& \text { Accept multiples }
\end{aligned}
$$

(ii) Plastics, polymers

Accept any polyalkene/haloalkanes/alcohols
(iii) so the bonds break $O \boldsymbol{O R}$ because the bonds are strong

IMF mentioned $=0$
(e) (i) 1,4-dibromo-1-chloropentane/1-chloro-1,4-dibromopentane Ignore punctuation
(ii) Chain/position/positional

Not structural or branched alone

