M1.(a) Electrophilic substitution Both words needed Ignore minor misspellings

1

1

1

1

(b) (i) Sn / HCl OR H₂ / Ni OR H₂ / Pt OR Fe / HCl OR Zn / HCl OR SnCl₂ / HCl Ignore conc or dil with HCl, Allow (dil) H₂SO₄ but not conc H₂SO₄ Not allow HNO₃ or H⁺ Ignore NaOH after Sn / HCl Ignore catalyst

(ii)
$$CH_3C_6H_4NO_2 + 6[H] \rightarrow CH_3C_6H_4NH_2 + 2H_2O$$

OR

$$C H_3 \longrightarrow O_2 + 6[H] \longrightarrow C H_3 \longrightarrow OH_2 + 2H_2O$$

Allow molecular formulae as structures given $C_7H_7NO_2 + 6[H] \rightarrow C_7H_9N + 2H_2O$ Qu states use [H], so penalised $3H_2$

(iii) making dyes

OR <u>making</u> quaternary ammonium salts

OR making (cationic) surfactants

OR making hair conditioner

OR making fabric softener

OR making detergents

M2

4

1

1

NO Mark for name of mechanism Allow SN1 M1 for lone pair on N and arrow to C or mid point of space between N and C M2 for arrow from bond to Br M3 for structure of protonated secondary amine M4 for arrow from bond to N or + on N For M4: ignore RNH₂ or NH₃ removing H⁺ but penalise Br⁻

(d) lone or electron pair on N

If no mention of lone pair CE = 0If lone pair mentioned but not on N then lose M1 and mark on

M1

in **J** spread / delocalised into ring (or not delocalised in K) Ignore negative inductive effect of benzene Allow interacts with **I** cloud for M2

M2

M3

M2

OR

in **K** there is a positive inductive effect / electron releasing)

more available (for protonation or donation in **K**)

less available (for protonation or donation in **J**)

1

1

1

1

1

1

M2.(a) M1 Ester **1**

If Ester 2, can score M3 only.

(R-)c-o-c(-) M2 peak at $\delta = 4.1$ due to

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

M3 ($\delta = 4.1$ peak is) quartet as <u>adjacent / next to / attached to CH₃</u>

M4	Other spectrum quartet at δ = 2.1-2.6 (or value in this range)	
----	---	--

(b) M1 <u>Quaternary</u> (alkyl) ammonium salt / bromide

M2 CH₃Br or bromomethane Penalise contradictory formula and name.

M3 Excess (CH₃Br or bromomethane) Mention of acid eg H₂SO₄ OR alkali eg NaOH loses both M2 and M3.

1

M4 Nucleophilic substitution Can only score M3 if reagent correct. Ignore alcohol or ethanol (conditions) or Temp.

(c)

Bromine	Acidified KMnO₄
(penalise Br but mark on)	(Penalise missing acid but mark on)

Wrong reagent = no marks.

If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.

Benzene	no reaction / c olour remains / no (visible) change	no reaction / colour remains / no (visible) change
---------	--	--

Ignore 'clear', 'nothing'. Allow colour fades slowly. Allow 'nvc' for no visible change.

cyclohexene	(Bromine) decolourised	(Acidified KMnO₄) decolourised
	decolourised	decolourised

M3. (a) (i) $CH_3CH=CHCH_3$

Addition or radical (QoL)

[11]

1

1

1

1

1

1

1

1

1

(b) Structure 1

$$\begin{array}{ccc} CH_{3} & CH_{2}OH \\ I & I \\ H_{2}N & -C - C - N - C - COOH \\ I & I & I \\ H & O & H \end{array}$$

Allow –CONH– and –COHN– Allow zwitterions **NOT polypeptides/repeating units**

Structure 2 either of

(ii) CH₃CH₂CN

1

1

(iii)	(nucleophilic) substitution or from CH ₃ CH ₂ CH ₂ Br	
	if reduction written here, no further marks	
		1
	further substitution/reaction occurs or other products are formed	
	Allow reduction forms only one product	
		1
	one of	
	(CH ₃ CH ₂ CH ₂) ₂ NH	
	$(CH_3CH_2CH_2)_3N$	
	(CH₃CH₂CH₂)₄N⁺ Br-	
	Allow salts including NH₄Br	
	Allow HBr	

[15]

1

M4.(a) (nucleophilic) addition-elimination

M4 for 3 arrows and lp

Allow wrong amine in M1 but penalise in M3

Allow C₃H₇ in M3

Minus sign on NH₃ loses M1 (but not M4 if NH₃ also shown here)

- Allow attack by: NH₂CH₂CH₂CH₃
- M2 not allowed independent of M1, but allow M1 for correct attack on $C^{\text{\tiny +}}$
- + rather than δ + on C=O loses M2
- If CI lost with C=O breaking, max 1 for M1

• M3 for correct structure <u>with charges</u> but lone pair on O is part of M4

• 3 arrows in M4 can be shown in two separate steps.

• If M3 drawn twice, mark first answer eg ignore missing + if missed off second structure

4

1

1

1

1

- Only allow M4 after correct / very close M3
- For M4, ignore RNH₂ removing H⁺ but lose M4 for Cl-removing H⁺ in mechanism,
- but ignore HCl shown as a product.

<u>N-propylethanamide</u> must be this name even if wrong amine used NOT N-propylethaneamide

(b) (i)

Not allow ambiguous C₃H₇NH₂ BEWARE No mark for the original amine CH₃CH₂CH₂NH₂ *Label and structure must both be correct for each type to score the mark.*

Allow C₂H₅ Penalize wrong number of carbons but otherwise correct, first time only.

(ii) Absorption at <u>3300–3500</u> (cm⁻¹) in spectrum
Allow trough, peak, spike.
Ignore absorption at 750 – 1100 for C–C bond in secondary - this is within fingerprint region.

Allow any number in this range. If range missing, no further marks. If range linked to tertiary, no further marks.

1

1

1

1

N–H (bond) (only) present in secondary amine or not present in tertiary amine

OR

This peak or N–H absorption (only) present in spectrum of secondary amine or not present in spectrum of tertiary amine

(c) (i) M1 Route A: stage 1 KCN Apply list principle for extra reagents or catalysts NOT HCN NOT KCN / acid Not KCN / HCN

> M2 Aqueous or ethanolic M2 only scores after correct M1 ignore warm; acid here loses M1 & M2

M3 Route A Intermediate CH₃CH₂CN or propanenitrile If M3 intermediate wrong, max 2 for M1 & M2 ie no mark for stage 2

Name alone must be exactly correct to gain M1 but mark on if name close

But if M3 intermediate close, eg "nitrile" or wrong nitrile, can award marks in stage 2

correct formula gains M1 (ignore name if close)

If stage 1 correct and intermediate is missing, can award marks in stage 2

contradiction of name and formula loses mark

stage 1 wrong & intermediate missing, no marks.

M4 Route A: stage 2 H_2

H loses M4 but mark on

LiAlH₄

Apply list principle for extra reagents or catalysts.

M5 only scores after correct M4 Not NaBH₄ not Sn or Fe / HCI Allow (dil) acid after but not with LiAIH₄ Penalise conc acid.

Ni o	or Pt	or	Pd
------	-------	----	----

ether

M6 Route **B** NH₃ With acid loses M6 & M7 Apply list principle for extra reagents or catalysts.

M7 Excess NH₃ Ignore conc, ignore high P, ignore solvent.

(ii) Route **A** disadv HCN

M5

Toxic / poisonous KCN or cyanide or CN⁻ or

Expensive LiAIH₄ ignore acidified

OR lower <u>yield</u> because 2 steps Allow H₂ flammable / explosive etc. Not just dangerous. Ignore time reasons.

1

1

1

1

1

1

Route **B** disadv Further reaction / substitution likely Allow impure product.

[20]