
M1. (a) dimethylamine

(b) nucleophilic substitution

(c) quaternary ammonium salt

(cationic) surfactant / bactericide / detergent / fabric softener or conditioner/hair conditioner

(d)

(allow CH₃COOH or CH₃COO- NH₄-)

[10]

1

1

1

1

2

M2. X is CH₃CN or ethanenitrile or ethanonitrile or methyl cyanide or cyanomethane or ethyl nitrile or methanecarbonitrile

Not ethanitrile

but contradiciton of name and structure lose marks

Y is CH₃CH₂NH₂ or ethylamine or aminoethane or ethanamine

1

1

Step 1: reagent KCN not HCN/HCl condition (aq)/alcohol - only allow condition if reagent correct or incomplete

2

Step 2: reagent H₂ LiAlH₄ Na Zn/Fe/Sn Not NaBH₄ condition Ni/Pt/Pd ether ethanol HCl

2

Z is an amine or aminoalkane or named amine even if incorrect name for **Z** secondary (only award if amine correct)

1

$$\begin{bmatrix} CH_{3} \\ | \\ CH_{3}CH_{2}-N-CH_{3} \\ | \\ CH_{3} \end{bmatrix}^{+}$$

(Br-) + can be on N or outside brackets as shown

1

1

nucleophilic substitution

[9]

M3. (a)

$$CH_3CH_2 \xrightarrow{\text{Br}} M2$$

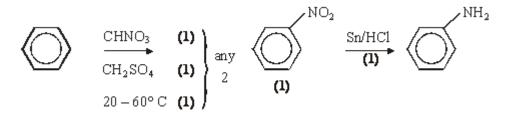
$$CH_3CH_2 \xrightarrow{+} H$$

$$CH_3CH_2 \xrightarrow{+} H$$

$$CH_3CH_2 \xrightarrow{+} H$$

$$M1$$

$$M3$$


$$M4$$

$$M3$$

Further reaction / substitution / formation of 2° / 3° amines etc (1) use an excess of NH₃ (1)

6

(b) repels nucleophiles (such as NH₃) (1)

5

Notes

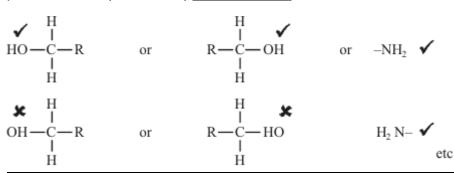
- (a) allow $S_{N}1$ penalise: Br intead of NH₃ removing H for M4 not contamination with *other amines* (this is in the question) not diamines
- (b) allow because NH₃ is a nuclephile or benzene is (only) attacked by electrophiles or C–Br bond (in bromobenzene) is stronger / less polar or Br lp delocalized

HNO₃ / H₂SO₄ without either conc scores (1) allow 20 – 60° for (1) (any 2 ex 3)

allow name or structure of nitrobenzene

other reducing agents: Fe or Sn with HCl (conc or dil or neither) not conc H₂SO₄ or conc HNO₃ allow Ni/H₂
Not NaBH₄ or LiAlH₄

ignore wrong descriptions for reduction step e.g. hydrolysis or hydration


[11]

Organic points

(1) <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

(2) Structures

penalise sticks (i.e. |) once per paper

Penalise once per paper

$$\begin{array}{c|c} \underline{allow} \ CH_3- \ or \ -CH_3 \ or \ & | \ or \ CH_3 \\ \hline or \ H_3C- \end{array}$$

M4. (a) (i) conc HNO_3

conc H₂SO₄

allow 1 for both acids if either conc missing

$$HNO_3 + 2H_2SO_4 \rightarrow NO_{2^+} + H_3O^+ + 2HSO_{4^-}$$

or
$$HNO_3 + H_2SO_4 \rightarrow NO_2^+ + H_2O + HSO_4^-$$

(iii) electrophilic substitution CH₃

1

1

1

1

horseshoe must not extend beyond C2 to C6 but can be smaller + must not be too close to Cl

3

1

- (b) Sn or Fe / HCl (conc or dil or neither) or Ni / H₂ not NaBH₄ LiAlH₄
- (c) (i) NH_3

Use an excess of ammonia

- (ii) nucleophilic substitution
- M3 structure $C_6 H_5 CH_2 CI$ $C_6 H_5 CH_2 CI$ $M_4 H_4 CI$ $M_5 CI$

[15]

M5. (a) Nucleophilic substitution

M1, M2 and M4 for arrows, M3 for structure of cation

(Allow M2 alone first, i.e. SN1 formation of carbocation)

Page 6

(Penalise M4 if Br used to remove H)

						4	
(b)	Step	1	CH ₃ CH ₂ CH ₂ CN	1			
	CH₃CH₂CH₂Br + KCN → CH₃CH₂CH₂CN + KBr balanced					1	
			(or CN-) (or Br-) (not HCN)			1	
	Step	2		· 2H₂ → CH₃CH₂CH₂C 4[H])	CH ₂ NH ₂	1	
(c)	(i)		Lone pair (on N) (in correct context)		raa alaatrana /nuahaa	1	
		R group increases electron density / donates electrons /pushes electrons / has positive inductive effect	es electrons /pusiles	1			
	(ii)	Any strong acid (but not concentrated) or any amine salt or ammonium salt of a strong acid		1			
(d)	$CH_3CH_2N(CH_3)_2$					1	[12]