M1.(a) **P** 3,3-dimethylbut-1-ene

OR

accept 3,3-dimethylbutene

Ignore absence of commas, hyphens and gaps Require correct spelling

Q 3-chloro-2,2-dimethylbutane

OR accept 2-chloro-3,3-dimethylbutane

accept 2-chloro-3,3-dimethylbutane
In Q, "chloro" must come before "dimethyl"

(b) M1 Electrophilic addition

M4 Structure

M2 must show an arrow from the double bond towards the H atom of HCl

M3 must show the breaking of the H-Cl bond

M4 is for the structure of the carbocation

M5 must show an arrow from the lone pair of electrons on the negatively charged chloride ion towards the positively charged carbon atom on <u>their</u> carbocation.

NB The arrows here are double-headed

M1 both words required

For the mechanism

M3 Penalise incorrect partial charge on H−Cl bond and penalise formal charges

Ignore partial negative charge on the double bond.

<u>Maximum 3 of 4 marks for a correct mechanism</u> using HBr or the wrong organic reactant or wrong organic product (if shown) or a primary carbocation

Penalise once only in any part of the mechanism for a line and two dots to show a bond

Credit the correct use of "sticks"

For **M5**, credit attack on a partially positively charged carbocation structure, but penalise **M4**

2

(c) M1 Nucleophilic substitution

For **M1**, both words required. Accept phonetic spelling

M2 must show an arrow from the lone pair of electrons **on the nitrogen atom** of an ammonia molecule to the correct C atom

M3 must show the movement of a pair of electrons from the C- Cl bond to the Cl atom. Mark M3 independently provided it is from their original molecule
M4 is for the structure of the alkylammonium ion, which could be a condensed formula. A positive charge must be shown on, or close to, the N atom.

M5 is for an arrow from the N-H bond to the N atom

Award full marks for an $S_{\rm N}$ 1 mechanism in which ${\it M2}$ is the attack of the ammonia on the intermediate carbocation

NB These are double-headed arrows

For the mechanism

Penalise M2 if NH3 is negatively charged.

Penalise **M3** for formal charge on C of the C-Cl or incorrect partial charges on C-Cl

Penalise **M3** for an additional arrow from the Cl to something else

The second mole of ammonia is not essential for **M5**; therefore ignore any species here

Penalise once only for a line and two dots to show a bond

<u>Maximum 3 of 4 marks for the mechanism</u> for wrong organic reactant OR wrong organic product if shown Accept the correct use of "sticks"

(d) **M1** (base) elimination

M1 Dehydrohalogenation

M2 KOH OR NaOH

M3 Must be consequential on a correct reagent in M2, but if incomplete or inaccurate attempt at reagent (e.g. hydroxide ion), penalise M2 only and mark on

Any **one** from

- <u>high</u> temperature OR <u>hot</u> OR <u>heat / boil under reflux</u>
- concentrated
- alcohol / ethanol (as a solvent) / (ethanolic conditions)

M3 not "reflux" alone

M3 if a temperature is stated it must be in the range 78C to 200 °C

Ignore "pressure"

3

M2 and M3

SO₂ and Br₂ identified

M4

Concentrated sulfuric acid

- is an oxidising agent
- oxidises the <u>bromide (ion) or Br⁻ or NaBr or HBr</u>
- is an electron acceptor

In **M2** and **M3** the two gases need to be identified. If equations are used using sulfuric acid and the toxic gases are not identified clearly, allow one mark for the formulas of SO_2 and Br_2

- apply the list principle as appropriate but ignore any reference to HBr
- the marks are for identifying the two gases either by name or formula

[19]

M2.(a) Structure for 3-methylbut-1-ene

H₂C=CHCH(CH₃)₂

Any correct structural representation.

Credit "sticks" and require the double bond.

1

(b) Structure for 2-methylpropan-2-ol

(CH₃)₃COH

Any correct structural representation.

Credit "sticks".

(c) Structure for propene

H₂C=CHCH₃

Any correct structural representation.

Credit "sticks" and require the double bond.

(d) Structure for 2-aminobutane

CH₃CH₂CH(NH₂)CH₃

Any correct structural representation. Credit "sticks".

[4]

1

1

M3.(a) (i) M1 Elimination

M1 Credit "base elimination" but no other prefix.

Penalise M2 if covalent KOH

Penalise **M4** for formal charge on C or Br of C-Br or incorrect partial charges on C-Br

M2 must show an arrow from the <u>lone pair on the oxygen</u> of a negatively charged hydroxide ion <u>to a correct</u> H atom

Ignore other partial charges

M3 must show an arrow from a correct C-H bond adjacent to the C-Br bond to a correct C-C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent C-H bond in **M2**

Penalise **once only** in any part of the mechanism for a line and two dots to show a bond

M4 is independent provided it is from their <u>original molecule</u>, **BUT CE=0** <u>for the mechanism (penalise M2, M3 and M4 only)</u> if nucleophilic substitution mechanism is shown

<u>Maximum any 2 of 3 marks for the mechanism</u> for wrong organic reactant or wrong organic product (if shown).

Credit the correct use of "sticks" for the molecule except for the C-H being attacked

Award full marks for an E1 mechanism in which **M4** is on the correct carbocation

Penalise **M4**, if an additional arrow is drawn from Br eg to K⁺

NB These are double-headed arrows

(ii) <u>Displayed formula</u> for 3-methylbut-1-ene

All bonds and atoms must be drawn out, but ignore bond angles

(iii) Position(al) (isomerism or isomer)

Penalise any other words that are written in addition to these.

(b) (i) <u>Displayed formula</u> for 3-methylbutan-2-ol

All bonds and atoms must be drawn out, but ignore bond angles.

(ii) Any **one** from

- <u>Lower / decreased</u> temperature **OR** <u>cold</u>
- Less concentrated (comparative) OR dilute KOH

1

1

4

		Ignore "pressure".	1
	(iii)	Nucleophilic substitution Both words needed - credit phonetic spelling.	1
	(iv)	(Strong / broad) absorption / peak in the range 3230 to 3550 cm ⁻¹ or specified value in this range or marked correctly on spectrum Allow the words "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption.	1 [10]
M4 .C			[1]
M5. D			[1]
M6. D			[1]
	ectrophilic	substitution Both words needed Ignore minor misspellings Sn / HCI	1
(1	~, (1)	3117 T131	

OR H₂ / Ni OR H₂ / Pt OR Fe / HCl OR Zn / HCl OR SnCl₂ / HCl

Ignore conc or dil with HCl, Allow (dil) H₂SO₄ but not conc H₂SO₄ Not allow HNO₃ or H⁺ Ignore NaOH after Sn / HCl Ignore catalyst

1

(ii)
$$CH_3C_6H_4NO_2 + 6[H] \rightarrow CH_3C_6H_4NH_2 + 2H_2O$$

OR

$$C H_3 \longrightarrow NO_2 + 6[H] \longrightarrow C H_3 \longrightarrow NH_2 + 2H_2O$$

Allow molecular formulae as structures given $C_7H_7NO_2 + 6[H] \rightarrow C_7H_9N + 2H_2O$

Qu states use [H], so penalised 3H₂

1

(iii) making dyes

OR making quaternary ammonium salts

OR making (cationic) surfactants

OR making hair conditioner

OR making fabric softener

OR making detergents

1

(c)

M2

М3

NO Mark for name of mechanism

Allow SN1

M3 for structure of protonated secondary amine M4 for arrow from bond to N or + on N For M4: ignore RNH₂ or NH₃ removing H⁺ but penalise Br⁻ 4 (d) lone or electron pair on N If no mention of lone pair CE = 0If lone pair mentioned but not on N then lose M1 and mark on M1 1 in **J** spread / delocalised into ring (or not delocalised in K) Ignore negative inductive effect of benzene Allow interacts with Π cloud for M2 M2 1 less available (for protonation or donation in **J**) M3 OR in **K** there is a positive inductive effect / electron releasing) M2 more available (for protonation or donation in **K**) М3 [11]

M1 for lone pair on N and arrow to C or mid point of space

between N and C

M2 for arrow from bond to Br