M1.(a) $\quad \mathbf{P} \quad$ 3,3-dimethylbut-1-ene
OR accept 3,3-dimethylbutene Ignore absence of commas, hyphens and gaps Require correct spelling

Q 3-chloro-2,2-dimethylbutane
OR
accept 2-chloro-3,3-dimethylbutane
In Q, "chloro" must come before "dimethyl"
(b) M1 Electrophilic addition

M2 must show an arrow from the double bond towards the H atom of HCl M3 must show the breaking of the $\mathrm{H}-\mathrm{Cl}$ bond
M4 is for the structure of the carbocation
M5 must show an arrow from the lone pair of electrons on the negatively charged chloride ion towards the positively charged carbon atom on their carbocation.

NB The arrows here are double-headed
M1 both words required
For the mechanism
M3 Penalise incorrect partial charge on $\mathrm{H}-\mathrm{Cl}$ bond and penalise formal charges
Ignore partial negative charge on the double bond.
Maximum 3 of 4 marks for a correct mechanism using HBr or the wrong organic reactant or wrong organic product (if shown) or a primary carbocation
Penalise once only in any part of the mechanism for a line and two dots to show a bond
Credit the correct use of "sticks"
For M5, credit attack on a partially positively charged carbocation structure, but penalise M4

(c) M1 Nucleophilic substitution

For M1, both words required.
Accept phonetic spelling

M2 must show an arrow from the lone pair of electrons on the nitrogen atom of an ammonia molecule to the correct C atom
M3 must show the movement of a pair of electrons from the $\mathrm{C}-\mathrm{Cl}$ bond to the Cl atom. Mark M3 independently provided it is from their original molecule M4 is for the structure of the alkylammonium ion, which could be a condensed formula. A positive charge must be shown on, or close to, the N atom. M5 is for an arrow from the $\mathrm{N}-\mathrm{H}$ bond to the N atom
Award full marks for an $\mathbf{S}_{\mathbf{N}} 1$ mechanism in which $\mathbf{M 2}$ is the attack of the ammonia on the intermediate carbocation

NB These are double-headed arrows

For the mechanism
Penalise M2 if NH_{3} is negatively charged.
Penalise M3 for formal charge on \mathbf{C} of the $\mathrm{C}-\mathrm{Cl}$ or incorrect partial charges on $\mathrm{C}-\mathrm{Cl}$
Penalise M3 for an additional arrow from the CI to something else
The second mole of ammonia is not essential for M5; therefore ignore any species here
Penalise once only for a line and two dots to show a bond
Maximum 3 of 4 marks for the mechanism for wrong organic reactant OR wrong organic product if shown Accept the correct use of "sticks"
(d) M1 (base) elimination

M1 Dehydrohalogenation
M2 KOH OR NaOH
M3 Must be consequential on a correct reagent in M2, but if incomplete or inaccurate attempt at reagent (e.g. hydroxide ion), penalise M2 only and mark on

Any one from

- high temperature OR hot OR heat / boil under reflux
- concentrated
- alcohol / ethanol (as a solvent) / (ethanolic conditions)

M3 not "reflux" alone
M3 if a temperature is stated it must be in the range 78C to $200^{\circ} \mathrm{C}$ Ignore "pressure"
(e) M1
$3 \mathrm{NaBr}+\mathrm{H}_{3} \mathrm{PO}_{4} \longrightarrow 3 \mathrm{HBr}+\mathrm{Na}_{3} \mathrm{PO}_{4}$
M1 Credit correct ionic species in the equation

M2 and M3

SO_{2} and Br_{2} identified
M4
Concentrated sulfuric acid

- is an oxidising agent
- oxidises the bromide (ion) or Br^{-}or NaBr or HBr
- is an electron acceptor

In M2 and M3 the two gases need to be identified. If equations are used using sulfuric acid and the toxic gases are not identified clearly, allow one mark for the formulas of SO_{2} and Br_{2}

- apply the list principle as appropriate but ignore any reference to HBr
- the marks are for identifying the two gases either by name or formula

M2.(a) Structure for 3-methylbut-1-ene $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}$

Any correct structural representation.
Credit "sticks" and require the double bond.
(b) Structure for 2-methylpropan-2-ol
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
Any correct structural representation.
Credit "sticks".
(c) Structure for propene
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
Any correct structural representation.
Credit "sticks" and require the double bond.
(d) Structure for 2-aminobutane
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$
Any correct structural representation.
Credit "sticks".
[4]

M3.(a) (i) M1 Elimination
M1 Credit "base elimination" but no other prefix.
M2

Penalise M2 if covalent KOH
Penalise M4 for formal charge on C or Br of $\mathrm{C}-\mathrm{Br}$ or incorrect partial charges on $\mathrm{C}-\mathrm{Br}$

M2 must show an arrow from the lone pair on the oxygen of a negatively charged hydroxide ion to a correct H atom

Ignore other partial charges
M3 must show an arrow from a correct $\mathrm{C}-\mathrm{H}$ bond adjacent to the $\mathrm{C}-\mathrm{Br}$ bond to a correct C-C bond. Only award if an arrow is shown attacking the H atom of a correct adjacent $\mathrm{C}-\mathrm{H}$ bond in M2

Penalise once only in any part of the mechanism for a line and two dots to show a bond

M4 is independent provided it is from their original molecule, BUT CE=0 for the mechanism (penalise M2, M3 and M4 only) if nucleophilic substitution mechanism is shown

Maximum any 2 of 3 marks for the mechanism for wrong organic reactant or wrong organic product (if shown).
Credit the correct use of "sticks" for the molecule except for the $\mathrm{C}-\mathrm{H}$ being attacked

Award full marks for an E1 mechanism in which M4 is on the correct carbocation

Penalise M4, if an additional arrow is drawn from Br eg to K^{+}
NB These are double-headed arrows
(ii) Displayed formula for 3-methylbut-1-ene

All bonds and atoms must be drawn out, but ignore bond angles
(iii) Position(al) (isomerism or isomer)

Penalise any other words that are written in addition to these.
(b) (i) Displayed formula for 3-methylbutan-2-ol

All bonds and atoms must be drawn out, but ignore bond angles.
(ii) Any one from

- Lower / decreased temperature OR cold
- Less concentrated (comparative) $O R$ dilute KOH

- Water (as a solvent) / (aqueous conditions)

Ignore "pressure".
(iii) Nucleophilic substitution

Both words needed - credit phonetic spelling.
(iv) (Strong / broad) absorption / peak in the range $\mathbf{3 2 3 0}$ to $\mathbf{3 5 5 0} \mathrm{cm}^{-1}$ or specified value in this range or marked correctly on spectrum Allow the words "dip" OR "spike" OR "trough" OR "low transmittance" as alternatives for absorption.

M4.C

M5.D

M6.D

M7.(a) Electrophilic substitution
Both words needed
Ignore minor misspellings
(b) (i) $\mathrm{Sn} / \mathrm{HCl}$

OR $\mathrm{H}_{2} / \mathrm{Ni}$ OR $\mathrm{H}_{2} / \mathrm{Pt}$ OR Fe / HCl OR Zn / HCl OR $\mathrm{SnCl}_{2} / \mathrm{HCl}$
Ignore conc or dil with HCl ,
Allow (dil) $\mathrm{H}_{2} \mathrm{SO}_{4}$ but not conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
Not allow HNO_{3} or H^{+} Ignore NaOH after $\mathrm{Sn} / \mathrm{HCl}$ Ignore catalyst
(ii) $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

OR

Allow molecular formulae as structures given
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}+6[\mathrm{H}] \rightarrow \mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}+2 \mathrm{H}_{2} \mathrm{O}$
Qu states use [H], so penalised $3 \mathrm{H}_{2}$
(iii) making dyes
$O R$ making quaternary ammonium salts $O R$ making (cationic) surfactants $O R \underline{\text { making }}$ hair conditioner OR making fabric softener $O R$ making detergents
(c)
M2

NO Mark for name of mechanism
Allow SN1

M1 for lone pair on N and arrow to C or mid point of space between N and C
M2 for arrow from bond to Br
M3 for structure of protonated secondary amine
M4 for arrow from bond to N or + on N
For M4: ignore RNH_{2} or NH_{3} removing H^{+}but penalise Br^{-}

(d) lone or electron pair on N

If no mention of lone pair $C E=0$
If lone pair mentioned but not on N then lose M1 and mark on

in \mathbf{J} spread / delocalised into ring (or not delocalised in K) Ignore negative inductive effect of benzene Allow interacts with Π cloud for M2

less available (for protonation or donation in J)

OR
in \mathbf{K} there is a positive inductive effect / electron releasing)
M2
more available (for protonation or donation in \mathbf{K})
M3

