Question		ion	Expected Answers	Marks	Additional Guidance
1	(a)	(i)	2-Methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol
	(b)		OH V	1	Formula must be skeletal AND not include any symbol except for OH
	(c)	(i)	Same molecular formula but different structural formulae ✓	1	 ALLOW Same molecular formula but different arrangement of atoms OR Same molecular formula but different structures OR Same molecular formula but different displayed formulae DO NOT ALLOW Same molecular formula but different spatial arrangement of atoms
		(ii)	CH ₃ CH ₂ CH ₂ CH ₂ CH OR (CH ₃) ₂ CHCH ₂ OH ✓ ALLOW OH OR OH	1	ALLOW displayed formula ALLOW sticks (i.e. no H shown bonded to C) ALLOW

G	Quest	ion	Expected Answers	Marks	Additional Guidance
	(d)		Has O–H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) ✓ Forms hydrogen bonds with water (molecules) ✓	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
	(e)		CH ₃ COOCH ₂ CH ₂ OOCCH ₃ 1 mark for each ester end of molecule $✓ ✓$	2	ALLOW displayed formula OR skeletal formula ALLOW sticks CH ₃ COOCH ₂ CH ₂ OH shows one of the two ester groups and scores one mark
	(f)	(i)	$\begin{array}{c} CH_{3} & CH_{3} & H & CH_{3} \\ C = C & C = C \\ H & H & CH_{3} & H \\ \end{array}$	2	DO NOT ALLOW H_3C CH_3 H_3C OH $C=C$ CH_3 H_3C CH_3 $C=C$ CH_3 $C=C$ CH_3 H CH_3 i.e. no E
		(ii)	E/Z ✓	1	ALLOW cis-trans IGNORE geometric
		(iii)	CH₃CH₂CH=CH₂ OR but-1-ene ✓	1	If but-1-ene given in part (i), ALLOW but-2-ene OR $CH_3CH=CHCH_3$ i.e. ECF from f(i) DO NOT ALLOW methylpropene: $H_3C - H$ $H_3C - H$

From the evidence, candidates may have identified compound F as propanone, propanal or propanoic acid • The mark scheme for F = propanoic acid is shown in the 'Expected Answers' column. If F is propanone or propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanoic acid mass spec of E Remember to check the spectrum Quality of Written Communication – mass spec gives parent ion of 60 OR mass spec gives parent ion of 60 OR miss proceed CH ₃ CHOH Mr = 45 indicates loss of CH ₃ m/z = 45 indicates loss of CH ₃ OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates loss of CH ₃ OR m/z = 45 indicates loss of CH ₃ OR m/z = 45 indicates loss of CH ₃ OR m/z = 45 indicates loss of CH ₃ OR miss pare gives parent ion of 60 OR miss parent ion of 60 <	Question		Expected Answers	Marks	Additional Guidance				
 The mark scheme for F = propanote and propanal is shown in the 'Expected Answers' column. IF is propanote acid, the maximum score - 7, but if F is propanote acid mem maximum score - 6 (3) Mark scheme for F = propanote acid, the maximum score - 7, but if F is propanote acid maximum score - 8 (4) Mark scheme for F = propanote acid, the maximum score - 7, but if F is propanote acid maximum score - 8 (5) Mark scheme for F = propanote and propanal 7 Mark scheme for F = propanote acid, the spectrum Quality of Written Communication - mass spec gives D⁴ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 M² = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₂O M² = 45 indicates presence of CH₃CHOH OR CH₂CH₂OH OR C₂H₂O IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm⁻¹ so no O = H bond OR m/z = 45 indicates presence of CH₃CHOH OR cH₂CH₂OH OR C₂H₂O IR of F - Remember to check the spectrum IR shows tobroad absorption between 2500 to 3300 cm⁻¹ so no ta a carboxylic acid IR shows absorption at 1700 cm⁻¹ due to a C=O bond OR absorption at 1700 cm⁻¹ indicates a ketone OR aldertification and equation F is CH₃COCH₃ OR propanone E is CH₃CHOHCH₃ + [0] → CH₃CHO₂CH₃ + H₂O If F has been incorrectly identified as propanal, mark identification and equation as EOF, so max = 2 ALLOW E is CH₃CHO₂CH₃ + H₂O If F has been incorrectly identified as propanal, mark identification and equation as EOF, so max = 2 ALLOW E is CH₃CH₂CH₃ + H₂O CH₃CH₃CH₃CH₃ + H₂O CH₃CH₃CH₃CH₃ + H₂O CH₃CH₃CH₃CH₃ + H₂O CH₃CH	From t	the evider	nce, candidates may have identified compound F as propanor	ne, propanal	or propanoic acid				
 The mark scheme for F = propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid (g) Mark scheme for F = propanoic acid scheme for H = propanoic acid scheme for f = propanoic	• Th	The mark scheme for F = propanone and propanal is shown in the 'Expected Answers' column.							
If F is propanone or propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6 (g) Mark scheme for F = propanone and propanal 7 Mark scheme for F = propanoic acid Quality of Written Communication – mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 ✓ mass spec gives M* or molecular ion of 60 OR mass spec gives parent ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (OR m/z) value is 60 ✓ m/z = 45 indicates loss of CH ₃ OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR CH ₂ CH ₂ OH OR C ₂ H ₂ O ✓ OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates presence of CH ₃ CHOH OR m/z = 45 indicates present to check the spectrum IR of F - Remember to check the spectrum IR shows absorption somewhere between 3500 and 2500 cm ⁻¹ so not a carboxylic acid ✓ IR shows absorption at 170	• Th	The mark scheme for F = propanoic acid is shown in the 'Additional Guidance' column.							
(g)Mark scheme for F = propanone and propanal7Mark scheme for F = propanoic acidmass spec of E - Remember to check the spectrum Quality of Written Communication - mass spec gives Mf or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is $60 \checkmark$ 7Mark scheme for F = propanoic acidmass spec of E - Remember to check the spectrum 	If F is	f F is propanone or propanoic acid, then maximum score = 7; but if F is propanal then maximum score = 6							
$ \left \begin{array}{c c c c c c c c } \hline \end{tabular} \\ \hline \e$	(9	g)	Mark scheme for F = propanone and propanal	7	Mark scheme for F = propanoic acid				
Quality of Written Communication – mass spec gives M ⁺ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark QWC – mass spec gives M ⁺ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark m/z = 45 indicates loss of CH3 OR m/z = 45 indicates presence of CH3CHOH OR CH4CH4OH OR CH4CH4OH			mass spec of E– Remember to check the spectrum		mass spec of E– Remember to check the spectrum				
$ \begin{array}{ $			Quality of Written Communication – mass spec gives		QWC – mass spec gives M ⁺ or molecular ion of 60				
$ \begin{array}{ c $			M ⁺ or molecular ion of 60 OR mass spec gives parent ion		OR mass spec gives parent ion of 60				
$ \left \begin{array}{c c c c c c c c } \hline m/z = 45 \text{ indicates loss of CH}_3 & m/z = 45 \text{ indicates presence of CH}_3 CHOH & m/z = 45 \text{ indicates presence of CH}_3 CHOH & OR CH_2 CH_2 OH OR C_H_3 CHOH & OR CH_2 CH_2 OH OR C_H_5 O \checkmark \\ \hline Ro f - Remember to check the spectrum \\ \hline R shows no broad absorption between 2500 to 3300 cm^{-1} so so no O — H bond & OR no broad absorption between 2500 to 3300 cm^{-1} so not a carboxylic acid \checkmark & \hline R shows absorption at 1700 cm^{-1} due to a C=O bond \\ OR absorption at 1700 cm^{-1} indicates a ketone OR \\ aldehyde present \checkmark & \hline Identification and equation \\ F is CH_3 COCH_3 OR propanole \checkmark & \hline Identification and equation \\ F is CH_3 COCH_3 OR propanole \checkmark & \hline E is CH_3 COHOH CH_3 + H_2 O \checkmark & \hline If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 \\ ALLOW E is CH_3 CH_2 CH_2 OH + [O] \rightarrow CH_3 CH_2 CHO + H_2 O \checkmark & \hline Total \\ \hline 10 & \hline Tota \\ \hline 10 & \hline T$			of 60 OR highest <i>m/z</i> (ALLOW <i>m/e</i>) value is 60 ✓		OR highest m/z (OR m/e) value is 60 \checkmark				
OR $m/z = 45$ indicates presence of CH3CHOH OR CH2CH2OH OR C2H3O \checkmark OR $m/z = 45$ indicates presence of CH3CHOH OR CH2CH2OH OR C2H3O \checkmark IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so no ta carboxylic acid \checkmark IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O-H bond \checkmark IR shows absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark Identification and equation F is CH3COCH3 OR propanole \checkmark E is CH3CHOHCH3 OR propanole \checkmark E is CH3CHOHCH3 OR propanole \checkmark E is CH3CH2CH2OH OR propan-1-ol \checkmark CH3CH0HCH3 + [O] \longrightarrow CH3CH2CH3 H 20 \checkmark If F has been incorrectly identified as propanal, mark identification and equation as EOF, so max = 2 ALLOW E is CH3CH2_CH2OH \checkmark CH3CH2_CH2OH + 2[O] \longrightarrow CH3CH2COH + H2O \checkmark ALLOW: CH3CH2CH2OH + [O] \rightarrow CH3CH2CH0 + H2O \checkmark Total19			m/z = 45 indicates loss of CH ₃		m/z = 45 indicates loss of CH ₃				
OR CH_2CH_2OH OR $C_2H_5O \checkmark$ OR CH_2CH_2OH OR $C_2H_5O \checkmark$ IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR of F - Remember to check the spectrum IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O-H bond \checkmark IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark Identification and equation F is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark Identification and equation F is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ CH ₂ CH ₂ CH + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ COOH + H ₂ O \checkmark III OF CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark Total19			OR $m/z = 45$ indicates presence of CH ₃ CHOH		OR $m/z = 45$ indicates presence of CH ₃ CHOH				
IR of F - Remember to check the spectrum IR of F - Remember to check the spectrum IR shows no braad absorption between 2500 to 3300 cm ⁻¹ so IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O-H bond ✓ OR no broad absorption between 2500 to 3300 cm ⁻¹ so IR shows (broad) absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR IR shows absorption at 1700 cm ⁻¹ due to a C=O OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid ✓ Identification and equation F is CH ₃ COCH ₃ OR propanone ✓ Identification and equation F is CH ₃ CHOHCH ₃ + [O] → CH ₃ COCH ₃ + H ₂ O ✓ If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW: CH ₃ CH ₂ CH ₂ OH + [O] → CH ₃ CH ₂ CHO + H ₂ O ✓ Identification and equation as ECF, so max = 2 ALLOW: CH ₃ CH ₂ CH ₂ OH + [O] → CH ₃ CH ₂ CHO + H ₂ O ✓ If			OR CH ₂ CH ₂ OH OR C ₂ H ₅ O ✓		OR CH ₂ CH ₂ OH OR C ₂ H ₅ O ✓				
IR shows no broad absorption between 2500 to 3300 cm ⁻¹ so no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR shows (broad) absorption somewhere between 3500 and 2500 cm ⁻¹ suggests carboxylic acid OR O—H bond \checkmark on ta carboxylic acid \checkmark IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark Identification and equation F is CH ₃ COCH ₃ OR propanore \checkmark Identification and equation F is CH ₃ CHOHCH ₃ OR propan-2-ol \checkmark E is CH ₃ CHOHCH ₃ OR propan-2-ol \checkmark E is CH ₃ CH ₂ CH ₂ OH OR propan-1-ol \checkmark CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ COOH + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark LLOW: CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark 19			IR of F – Remember to check the spectrum		IR of F– Remember to check the spectrum				
so no O—H bond OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark Identification and equation F is CH ₃ COCH ₃ OR propanore \checkmark E is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark ALLOW: CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark Identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If OH as CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If OH as CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark If CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CH ₂ OH \checkmark If CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CH ₂ OH \checkmark If CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CH ₂ OH \checkmark If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \checkmark If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH \rightarrow If CH ₃ CH ₂ CH ₂ OH \rightarrow (CH ₃ CH ₂ CH ₂ OH			IR shows no broad absorption between 2500 to 3300 cm ⁻¹		IR shows (broad) absorption somewhere between 3500				
OR no broad absorption between 2500 to 3300 cm ⁻¹ so not a carboxylic acid \checkmark IR shows absorption at 1700 cm ⁻¹ due to a C=O bond OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark IR shows absorption at 1700 cm ⁻¹ due to C=O OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark Identification and equation F is CH ₃ COCH ₃ OR propanone \checkmark Identification and equation F is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark Identification and equation F is CH ₃ CH ₂ CHOH OR propanoic acid \checkmark E is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark E is CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ COOH + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW: CH ₃ CH ₂ CH ₂ OH \checkmark CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ CH ₂ OH \checkmark ALLOW: CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark 19			so no O—H bond		and 2500 cm ⁻⁺ suggests carboxylic acid OR O–H bond ✓				
$ \begin{array}{ c c c c c } \hline \end{tabular} \begin{tabular}{ c c c c c } \hline \end{tabular} \\ \hline \end{tabular} \end{tabular} \end{tabular} \\ \hline \end{tabular} \end{tabular}$			OR no broad absorption between 2500 to 3300 cm ⁻¹ so						
$ \begin{array}{ c c c c c c } \hline IR shows absorption at 1700 cm^{-1} due to a C=O bond OR absorption at 1700 cm^{-1} due to C=O OR absorption at 1700 cm^{-1} indicates a ketone OR aldehyde present \checkmark \\ \hline Identification and equation F is CH_3COCH_3 OR propanone \checkmark \\ \hline E is CH_3CHOHCH_3 OR propan-2-ol \checkmark \\ \hline CH_3CHOHCH_3 + [O] \longrightarrow CH_3COCH_3 + H_2O \checkmark \\ \hline If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 \\ ALLOW E is CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline Identification and equation as ECF, so max = 2 \\ ALLOW: CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark \\ \hline If Or CH_3CH_2CH_2CH_2OH + [O] \rightarrow CH_$			not a carboxylic acid 🗸						
OR absorption at 1700 cm ⁻¹ indicates a ketone OR aldehyde present \checkmark OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark Identification and equation F is CH ₃ COCH ₃ OR propanone \checkmark Identification and equation F is CH ₃ CHOHCH ₃ OR propan-2-ol \checkmark Identification and equation F is CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark E is CH ₃ CH ₂ CH ₂ OH OR propan-1-ol \checkmark CH ₃ CHOHCH ₃ + [O] \longrightarrow CH ₃ COCH ₃ + H ₂ O \checkmark CH ₃ CH ₂ CH ₂ OH + 2[O] \longrightarrow CH ₃ CH ₂ COOH + H ₂ O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark ALLOW: CH ₃ CH ₂ CH ₂ OH + [O] \rightarrow CH ₃ CH ₂ CHO + H ₂ O \checkmark Total19			IR shows absorption at 1700 cm ⁻¹ due to a C=O bond		IR shows absorption at 1700 cm ⁻¹ due to C=O				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			OR absorption at 1700 cm^{-1} indicates a ketone OR		OR absorption at 1700 cm ⁻¹ indicates a carboxylic acid \checkmark				
Identification and equation F is CH_3COCH_3 OR propanone \checkmark Identification and equation F is CH_3CH_2COOH OR propanoic acid \checkmark E is $CH_3CHOHCH_3$ OR propan-2-ol \checkmark E is $CH_3CH_2CH_2OH$ OR propan-1-ol \checkmark CH_3CHOHCH_3 + [O] \rightarrow CH_3COCH_3 + H_2O \checkmark CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$ CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark ALLOW: CH_3CH_2CH_2OH \checkmark Total19			aldehyde present 🗸						
F is CH_3COCH_3 OR propanone \checkmark F is CH_3CH_2COOH OR propanoic acid \checkmark E is CH_3CHOHCH_3 OR propan-2-ol \checkmark E is CH_3CH_2CH_2OH OR propan-1-ol \checkmark CH_3CHOHCH_3 + [O] \rightarrow CH_3COCH_3 + H_2O \checkmark CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is CH_3CH_2CH_2OH \checkmark CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark ALLOW: CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark Total19			Identification and equation		Identification and equation				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			F is CH_3COCH_3 OR propanone \checkmark		F is CH_3CH_2COOH OR propanoic acid \checkmark				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			E is $CH_3CHOHCH_3$ OR propan-2-ol \checkmark		E is $CH_3CH_2CH_2OH$ OR propan-1-ol \checkmark				
If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH \checkmark$ ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$ Total19			$CH_{3}CHOHCH_{3} + [O] \longrightarrow CH_{3}COCH_{3} + H_{2}O \checkmark$		$CH_3CH_2CH_2OH + 2[O] \longrightarrow CH_3CH_2COOH + H_2O \checkmark$				
ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$ Total			If F has been incorrectly identified as propanal, mark identification and equation as ECF, so max = 2 ALLOW E is $CH_3CH_2CH_2OH \checkmark$						
Total 19			ALLOW : $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O \checkmark$						
			Total	19					

F322 Extra guidance for marking of Q6(g)

If E has not been identified OR if F has been identified as a ketone or aldehyde, use the left-hand mark scheme

If **F** has been identified as a **carboxylic acid**, use the **right-hand** mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge. The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified. The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the –OH has been clearly identified

ALLOW ECF for identification of F e.g. if E is pentan-2-ol × then an answer of pentan-2-one for F will be given a mark ✓ as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product.

ALLOW molecular formulae in equations,

i.e. $C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

Question	Answer	Mark	Guidance
(b)	Molecular formula for G: 2 marks Mole ratio C : H : O = $55.8 \\ 12.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 16.0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	OR 4.65 : 7.0 : 2.33/2.325 OR 2 : 3 : 1 OR C ₂ H ₃ O \checkmark Molecular formula of G C ₄ H ₆ O ₂ \checkmark		ALLOW mass of C = 0.558 x 86 or 48 AND mass of H = 0.07 x 86 or 6 AND mass of O = 0.372 x 86 = 32
	Mass spectrum for G:2 marksPeak X or peak 41 indicates $C_3H_5^+ \checkmark$ Peak Y or peak 45 indicates COOH+ \checkmark		+ harge required for each response ALLOW one mark if both formulae are correct but with no charge/incorrect charge
	Infrared for G: 1 mark		ALLOW any possible fragments that contain C, H and/or O that have the correct mass. E.g. Peak X indicates C_2OH^+ , Peak Y indicates $C_2H_5O^+$ Unfeasible fragments are not allowed e.g. $C_3H_9^+$ (too many H atoms)
	Peak at 1640–1750 cm ⁻¹ indicates presence of C=O AND Peak at 2500–3300 cm ⁻¹ (indicates the presence of) –OH group linked carboxylic acid/COOH QWC ✓		LOOK ON THE SPECTRUM for labelled absorbance which can be given credit Candidates must link absorbance to bond in order to gain the mark
			ALLOW 1700 cm ⁻¹ For 2500–3300 cm ⁻¹ , ALLOW 2900 cm ⁻¹ or any stated wavenumber with range 2500–3300 cm ⁻¹ ALLOW wavenumber range up to 2400–3500 cm ⁻¹

Question	Answer	Mark	Guidance
	Structure of G: 2 marks		
	Correct structure: H = c = c + c		ALLOW structural, skeletal or displayed formula. DO NOT ALLOW ECF from incorrect molecular formula
	1 mark for one of the following structures of $C_4H_6O_2$: $H_2C = CH - CH_2 - COOH$ $OR H_3C - CH = CH - COOH$ OR - CH = CH - COOH OR - CH = CH - COOH		
	Total	13	

Question		on	er	Marks	Guidance
3	(a)		Only one (desired) product formed ✓	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 94% award 3 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			Moles of sulfur reacted or theoretical moles of $H_2SO_4 = 1.60 \times 10^6 \checkmark$		ALLOW 1.6×10^{6} to the calculator value $1.601246106 \times 10^{6}$ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded
			Actual moles of $H_2SO_4 = 1.50 \times 10^6 \checkmark$		ALLOW 1.5×10^6 to the calculator value 1.498470948×10^6 correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of H ₂ SO ₄ = 157 (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks
			% yield = 94 ✓		ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(C)	(i)	Position of equilibrium – unchanged 🗸	2	
			Rate of backward reaction – decreases ✓		

Q	Question		er	Marks	Guidance
	(c)	(i		1	Both position of equilibrium AND explanation needed for one mark
			(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic ✓		Note: ALLOW suitable alternatives for 'to left', e.g. towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW reaction gives out heat for exothermic ALLOW reaction takes in heat for endothermic ALLOW moves to the left in the endothermic direction ALLOW ORA if specified IGNORE responses in terms of rate
		(iii)		1	Both position of equilibrium AND explanation needed for one mark
			 (equilibrium position shifts) to the left because there are more moles (of gas) on the reactant side OR (equilibrium position shifts) to the left because there are fewer moles (of gas) on product side ✓ 		Note: ALLOW suitable alternatives for 'to left', e.g.: towards SO ₂ or O ₂ / towards reactants OR in backward direction OR in reverse direction OR decreases yield of SO ₃ /products ALLOW 'favours the left', as alternative for 'shifts equilibrium to left' ALLOW correct reference to volume of gases e.g. shifts to the left because there is a smaller volume of gas on the product side ALLOW ORA if specified IGNORE responses in terms of rate

Question	er	Marks	Guidance
(d) (ii	Н СН ₃ Н Н 	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
	нссн 		ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal –HO in the formula
	н о́нн́н́ ✓		ALLOW as a slip one stick with no H on in a displayed formula
	Total	13	