

Question		Expected Answers	Marks	Additional Guidance
(d)		Has O-H (bonds) OR has hydroxyl (groups) OR has hydroxy (groups) Forms hydrogen bonds with water (molecules)	2	ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group DO NOT ALLOW 'forms hydrogen bonds'
(e)		$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ 1 mark for each ester end of molecule	2	ALLOW displayed formula OR skeletal formula ALLOW sticks $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ shows one of the two ester groups and scores one mark
(f)	(i)		2	DO NOT ALLOW i.e. $n o E$
	(ii)	$E / Z \checkmark$	1	ALLOW cis-trans IGNORE geometric
	(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ OR but-1-ene \checkmark	1	If but-1-ene given in part (i), ALLOW but-2-ene $\mathbf{O R} \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ i.e. ECF from $f(i)$ DO NOT ALLOW methylpropene:

www.accesstuition.com

Questi	Expected Answers	Marks	Additional Guidance
From the evidence, candidates may have identified compound \mathbf{F} as propanone, propanal or propanoic acid - The mark scheme for $\mathbf{F}=$ propanone and propanal is shown in the 'Expected Answers' column. - The mark scheme for $\mathbf{F}=$ propanoic acid is shown in the 'Additional Guidance' column. If \mathbf{F} is propanone or propanoic acid, then maximum score $=7$; but if \mathbf{F} is propanal then maximum score $=6$			
(g)	Mark scheme for F = propanone and propanal	7	Mark scheme for $\mathrm{F}=$ propanoic acid
	mass spec of E- Remember to check the spectrum Quality of Written Communication - mass spec gives M^{+}or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m / z (ALLOW m / e) value is $60 \checkmark$ $m / z=45$ indicates loss of CH_{3} OR $\mathrm{m} / \mathrm{z}=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$ OR $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark$		mass spec of E - Remember to check the spectrum QWC - mass spec gives M^{+}or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m / z (OR m/e) value is $60 \checkmark$ $\mathrm{m} / \mathrm{z}=45$ indicates loss of CH_{3} OR $\mathrm{m} / \mathrm{z}=45$ indicates presence of $\mathrm{CH}_{3} \mathrm{CHOH}$ OR $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark$
	IR of F - Remember to check the spectrum IR shows no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so no O-H bond OR no broad absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ so not a carboxylic acid \checkmark IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to a $\mathrm{C}=\mathrm{O}$ bond OR absorption at $1700 \mathrm{~cm}^{-1}$ indicates a ketone OR aldehyde present		IR of F - Remember to check the spectrum IR shows (broad) absorption somewhere between 3500 and $2500 \mathrm{~cm}^{-1}$ suggests carboxylic acid OR O-H bond \checkmark IR shows absorption at $1700 \mathrm{~cm}^{-1}$ due to $\mathrm{C}=\mathrm{O}$ OR absorption at $1700 \mathrm{~cm}^{-1}$ indicates a carboxylic acid \checkmark
	Identification and equation F is $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ OR propanone E is $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$ OR propan-2-ol \checkmark $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} \checkmark$		Identification and equation F is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR propanoic acid E is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ OR propan-1-ol \downarrow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+2[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \checkmark$
	If \mathbf{F} has been incorrectly identified as propanal, mark identification and equation as ECF, so $\max =2$ ALLOW E is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \checkmark$ ALLOW: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$		
	Total	19	

www.accesstuition.com

Extra guidance for marking of Q6(g)
If \mathbf{E} has not been identified $\mathbf{O R}$ if \mathbf{F} has been identified as a ketone or aldehyde,
use the left-hand mark scheme
If F has been identified as a carboxylic acid,
use the right-hand mark scheme

Mass spec

These two marking points stand as independent marks whichever compounds have been identified.
The positive sign for fragment ions is not required. IGNORE negative charge.
The mass spec may well be on the actual spectrum.

IR mark

These stand as independent marks whichever compounds have been identified.
The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must both be correct
but allow 'propanol' drawn with the correct structure because the position number of the -OH has been clearly identified
ALLOW ECF for identification of \mathbf{F} e.g. if \mathbf{E} is pentan-2-ol \mathbf{x} then an answer of pentan-2-one for \mathbf{F} will be given a mark \checkmark as ECF
ALLOW identification marks for \mathbf{E} and \mathbf{F} from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate product.
ALLOW molecular formulae in equations,
i.e. $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \checkmark$;

$$
\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \checkmark ;
$$

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COH}+\mathrm{H}_{2} \mathrm{O} \checkmark
$$

Question	Answer	Mark	Guidance
	Structure of G: Correct structure: 1 mark for one of the following structures of $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$: $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}$ OR $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}$ OR		ALLOW structural, skeletal or displayed formula. DO NOT ALLOW ECF from incorrect molecular formula
	Total	13	

Question			er	Marks	Guidance
3	(a)		Only one (desired) product formed \checkmark	1	ALLOW no waste products OR no co-product OR all atoms on left hand side are in the desired product OR sulfuric acid is the only product IGNORE it is an addition reaction
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 94\% award 3 marks Moles of sulfur reacted or theoretical moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ $1.60 \times 10^{6} \checkmark$ Actual moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=1.50 \times 10^{6} \checkmark$ $\%$ yield $=94 \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 1.6×10^{6} to the calculator value $1.601246106 \times 10^{6}$ correctly rounded ALLOW 1.60 up to calculator value 1.601246106 correctly rounded ALLOW 1.5×10^{6} to the calculator value $1.498470948 \times 10^{6}$ correctly rounded ALLOW 1.5 up to calculator value 1.498470948 correctly rounded ALLOW theoretical mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=157$ (tonnes) up to the calculator value of 157.0822430 correctly rounded for two marks ALLOW ECF for a percentage yield from wrong moles above but answer must have two significant figures
	(c)	(i)	Position of equilibrium - unchanged Rate of backward reaction - decreases \checkmark	2	

Question			er	Marks
(c)	(i		(equilibrium position shifts) to the left because (forward) reaction is exothermic OR equilibrium position shifts) to the left because reverse reaction is endothermic \checkmark	Both position of equilibrium AND explanation needed for one mark

Quest		er	Marks	Guidance
(d)	(Correct structure \checkmark OR OR	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW bonds going to any part of the $\mathrm{CH}_{3}, \mathrm{CH}_{2}$ and CH bonds ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal -HO in the formula ALLOW as a slip one stick with no H on in a displayed formula IGNORE name

Questi		er	Marks	Guidance
(d)	(ii)	Correct structure for L Correct structure for $\mathbf{M} \checkmark$ Correct structure for $\mathbf{N} \checkmark$	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) for \mathbf{L}, \mathbf{M} and \mathbf{N} e.g. L or M L or M $\mathrm{N}-\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ Answers to L and M are interchangeable IGNORE cis/trans OR E/Z labels ALLOW as a slip one stick with no H on in a displayed formula ALLOW 2 marks if three correct structures are drawn but some are in the wrong boxes ALLOW 1 mark if two correct structures are drawn but in the wrong boxes

Question		er		Marks	Guidance
(d)	(ii			1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW vertical 'bond' to any part of the OH group DO NOT ALLOW horizontal -HO in the formula ALLOW as a slip one stick with no H on in a displayed formula
			Total	13	

