F322: Alcohols

1. 2-Methylpropan-2-ol ✓

ALLOW methylpropan-2-ol

[1]

2. Has O–H (bonds)

OR has hydroxyl (groups) **OR** has hydroxy (groups) ✓

ALLOW marks from a diagram of hydrogen bonding IGNORE reference to alcohol functional group

Forms hydrogen bonds with water (molecules) ✓

DO NOT ALLOW 'forms hydrogen bonds'

[2]

3. CH₃COOCH₂CH₂OOCCH₃

1 mark for each ester end of molecule 🗸

ALLOW displayed formula OR skeletal formula ALLOW sticks

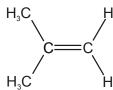
CH₃COOCH₂CH₂OH shows one of the two ester groups and scores one mark

[2]

4. (i)

$$CH_3$$
 CH_3 H CH_3
 $C=C$
 $C=C$
 $DO\ NOT\ ALLOW$
 H_3C CH_3 H_3C OH
 $C=C$
 $C=C$

2


(ii) *E/Z* ✓

ALLOW cis-trans
IGNORE geometric

(iii) CH₃CH₂CH=CH₂ **OR** but-1-ene ✓

If but-1-ene given in part (i), ALLOW but-2-ene OR CH₃CH=CHCH₃ i.e. ECF from (i)

DO NOT ALLOW methylpropene:

[4]

5. From the evidence, candidates may have identified compound **F** as propanone, propanal or propanoic acid

If **F** is propanone or propanoic acid, then maximum score = 7; **but** if **F** is propanal then maximum score = 6

The mark scheme for \mathbf{F} = propanone and propanal is shown below.

mass spec of E-Remember to check the spectrum

Quality of Written Communication – mass spec gives M^+ or molecular ion of 60 OR mass spec gives parent ion of 60 OR highest m/z (ALLOW m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃

OR m/z = 45 indicates presence of CH₃CHOH

OR CH₂CH₂OH OR C₂H₅O ✓

IR of F – Remember to check the spectrum

IR shows no broad absorption between 2500 to 3300 cm $^{-1}$ so no O—H bond **OR** no broad absorption between 2500 to 3300 cm $^{-1}$ so not a carboxylic acid \checkmark

IR shows absorption at 1700 cm⁻¹ due to a C=O bond

OR absorption at 1700 cm⁻¹ indicates a ketone **OR** aldehyde present

Identification and equation

F is CH₃COCH₃ **OR** propanone ✓

E is CH₃CHOHCH₃ **OR** propan-2-ol ✓

 $\text{CH}_3\text{CHOHCH}_3 + [\text{O}] \rightarrow \text{CH}_3\text{COCH}_3 + \text{H}_2\text{O} \checkmark$

If \mathbf{F} has been incorrectly identified as propanal, mark identification and equation as ECF, so $\max = 2$

ALLOW E is CH₃CH₂CH₂OH ✓

ALLOW: $CH_3CH_2CH_2OH + [O] \rightarrow CH_3CH_2CHO + H_2O$

The mark scheme for F = propanoic acid is shown below.

mass spec of E-Remember to check the spectrum

QWC – mass spec gives M⁺ or molecular ion of 60

OR mass spec gives parent ion of 60

OR highest m/z (**OR** m/e) value is 60 \checkmark

m/z = 45 indicates loss of CH₃

OR m/z = 45 indicates presence of CH₃CHOH

OR CH2CH2OH OR C2H5O ✓

IR of F- Remember to check the spectrum

IR shows (broad) absorption somewhere between 3500 and 2500 cm⁻¹ suggests carboxylic acid **OR** O−H bond ✓

IR shows absorption at 1700 cm⁻¹ due to C=O

OR absorption at 1700 cm^{-1} indicates a carboxylic acid \checkmark

Identification and equation

F is CH₃CH₂COOH **OR** propanoic acid ✓

E is CH₃CH₂CH₂OH **OR** propan-1-ol ✓

 $CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O \checkmark$

Extra guidance for marking of question

If E has not been identified OR if F has been identified as a ketone or aldehyde, use the first mark scheme

If F has been identified as a carboxylic acid, use the second mark scheme

Mass spec

These two marking points stand as **independent** marks whichever compounds have been identified.

The positive sign for fragment ions is not required. **IGNORE** negative charge.

The mass spec may well be on the actual spectrum.

IR mark

These stand as **independent** marks whichever compounds have been identified.

The IR analysis may well be on the actual spectrum.

Identification marks

If both structure and name are given they must **both** be correct but allow 'propanol' drawn with the correct structure because the position number of the -OH has been clearly identified

ALLOW ECF for identification of **F** e.g. if **E** is pentan-2-ol then an answer of pentan-2-one for **F** will be given a mark ✓ as ECF

ALLOW identification marks for E and F from equation

Equation mark

ALLOW ECF for any correct equation showing the oxidation of any alcohol to the appropriate

ALLOW molecular formulae in equations,

i.e.
$$C_3H_7OH + [O] \rightarrow C_2H_5CHO + H_2O \checkmark$$
; $C_3H_8O + [O] \rightarrow C_3H_6O + H_2O \checkmark$; $C_3H_7OH + [O] \rightarrow C_2H_5COH + H_2O \checkmark$

[7]

6. method 1: (a)

fermentation of sugars or carbohydrates **OR** reaction with yeast with sugar or carbohydrates < $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$

method 2:

hydration of ethene **OR** reaction of ethene with water **OR** reaction of steam with ethene ✓

$$C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$$
ALLOW sugar from equation
ALLOW C_2H_6O in equation
ALLOW correct multiples
IGNORE state symbols

ALLOW ethene from the equation IGNORE mention of any catalyst **ALLOW** C_2H_6O in equation **OR** H_2O over the arrow

ALLOW correct multiples IGNORE state symbols

(b) (i) (CH₃)₂CO **OR**

 $(CH_3)_2CHOH + [O] \rightarrow (CH_3)_2CO + H_2O \checkmark$

If name and formula given both need to be correct

ALLOW propanone OR acetone

IGNORE propone

NOT incorrect named compound

$$ALLOW C_3H_8O + [O] \rightarrow C_3H_6O + H_2O$$

ALLOW O instead of [O]

ALLOW correct multiples

IGNORE state symbols

(ii) CH₃CH₂COOH **OR** propanoic acid ✓

Any number or range of numbers between 1750–1640 (cm⁻¹) for C=O \checkmark

Any number or range of numbers between 2500–3300 (cm $^{-1}$) for O–H \checkmark

ALLOW C=O and O—H marks independent of compound identified **i.e. stand alone marks**

ALLOW correct bonds shown by the appropriate absorption on the IR spectrum

IGNORE reference to C—O bond

(c) (i) 2-methylpropan-2-ol ✓

ALLOW methylpropan-2-ol OR tertiarybutanol

(ii) ester ✓

1

3

(iii) $CH_3CO_2C(CH_3)_3$ **OR** $CH_3COOC(CH_3)_3$

ester group shown ✓

rest of molecule ✓

ALLOW skeletal formula OR displayed formula ALLOW ester linkage even if rest of structure is wrong

2

[13]

7. Availability of starting materials:

availability

sugar is renewable because it can be grown (1) ethane is finite because it is obtained by processing of crude oil (1)

energy:

fermentation: energy is required for distillation/ hydration: energy is required to generate steam (1)

atom economy and waste products:

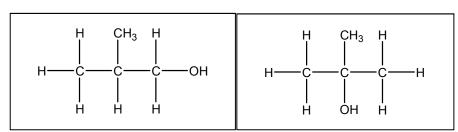
atom economy for fermentation < atom economy hydration (1) In fermentation, CO₂ is produced in addition to ethanol/ethanol is not the only product (1)

In hydration, ethanol is the only product/hydration is an addition reaction (1)

Atom economy of fermentation could be increased by finding a use $CO_2(1)$

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7max

[7]


- 8. (a) (i) (volatile components) can escape/distil out (1) ethanal is most volatile/bpt less than 60 °C/partial oxidation (1) 2
 - (ii) (volatile components) cannot escape/ refluxed (1) complete oxidation will be achieved/oxidised to the acid (1) 2
 - (b) $C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ $C_2H_5OH, 2[O] \text{ and } CH_3COOH \text{ (1)}$ rest of equation (1)

[6]

- 9. (i) $C_6H_{12}O_6$ (aq) \rightarrow $2C_2H_5OH(l)$ or (aq) + $2CO_2(g)$ balanced equation 1 state symbols can be awarded only if equation shows $C_6H_{12}O_6$, C_2H_5OH and CO_2 1
 - (ii) anaerobic, aqueous, temp range 25 40°C/warm to just above room temp 2
 - (iii) no more bubbles/gas/CO₂

10. $CH_3CH(OH)CH_3 + 4\frac{1}{2}O_2 \rightarrow 3CO_2 + 4H_2O/C_3H_8O$ (1 mark if correct formula for all four chemicals and 1 mark for correct balancing)

11. (i) 2

(ii) either (2-)methylpropan-1-ol or (2-)methylpropan-2-ol 1 [3]

2

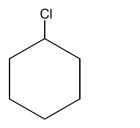
[5]

[2]

12.

Minimum – must display/show C=C

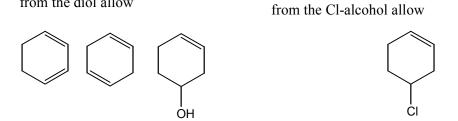
[3]


- 13. (a) (i) H^+ 1 $Cr_2O_7^{2-}$ 1
 - (ii) Orange to green/black/blue 1
 - (b) (i) contains a C=O/aldehyde, ketone, carboxylic acid and ester/ 1 carbonyl/carbonyl in an aldehyde
 - (ii) does **not** contain a O–H/ (hydrogen bonded in a) carboxylic acid
 - (iii) distillation (no mark) **because** distillation allows loss of volatile components /removes butanal from oxidising mixture prevents formation of RCOOH/ partial oxidation would be achieved or reverse argument for reflux not being used in that reflux prevents loss of volatile components hence complete oxidation would be achieved/RCOOH would be formed

[7]

1

1


14. (a) (i)

(ii) H₂SO₄/Al₂O₃/(hot) pumice/H₃PO₄ 1 (H₂SO₄(aq) or dil H₂SO₄ loses the mark) (iii) OH + H₂O

 $C_6H_{11}OH \ / \ C_6H_{12}O \to C_6H_{10} + H_2O$

(ii) 2 from the diol allow from the Cl alcohol allow

[6]

- **15.** (i) *low volatility*, = **high** boiling point/ not easy to vapourise/owtte *intermolecular bonds*. = bonds/forces/attractions **between** molecules
- 1

(ii) type of intermolecular bond = hydrogen bond

1

dipoles on both O-H bonds

1

1

1

1

- H-bond shown as a 'dashed bond'
 - H |

(iii) (The boiling point of glycerol will be higher than ethanol because there are) more OH groups ∴ more H-bonds

[6]

16. (i) butan-2-ol by name or by formula \checkmark

(ii)

- curly arrow from the O of the OH- to $C^{(\delta^+)}$ \checkmark
- curly arrow from C-Cl bond to Cl and correct dipoles ✓
- correct products/ allow NaCl ✓
- curly arrow from lone pair on :OH⁻ ✓
- S_N1 route can still score all 4 marks:
- curly arrow from C-Cl bond to Cl <u>and</u> correct dipoles \checkmark
- curly arrow from the O of the OH⁻ to C+ ion ✓
- correct products/ allow NaCl ✓
- curly arrow from lone pair on :OH⁻ ✓

[5]

17. (i) $H^+ \checkmark Cr_2O_7^{2-}$

(ii)

compound E
$$\begin{array}{c} \text{Compound F} \\ \text{H}_3\text{C} \\ \text{C} \\ \text{C}$$

(iii) carboxylic acid would have an absorption between $1680-1750~\text{cm}^{-1}/1700~\text{cm}^{-1}$ or $2500-3300~\text{cm}^{-1}$.

[6]

1

1

1

- **18.** (a) (i) H_2SO_4 any mention of (aq) loses the mark
 - (ii) any correct formula/structure or name for benzoic acid
 - (b) (i) dichromate/Cr₂O₇²⁻/permanganate 1
 - (ii) 1

$$C_6H_{12}O + [O] \longrightarrow C_6H_{10}O + H_2O$$
 [4]

19.
$$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$$

 $(C_2H_5OH \& CO_2 \checkmark)$

[2]

20.

dipoles

hydrogen bond between O in one O-H

and H in the other O-H

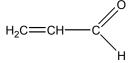
lone pair from O involved in the H-bond

1

[3]

- 21. (a) (i) (volatile components) can escape/distil out

 ethanal is most volatile/b pt less than 60°C/partial oxidation


 (ii) (volatile components) cannot escape/ refluxed

 complete oxidation will be achieved/oxidised to the acid

 1
 - (b) $C_2H_5OH + 2[O] \rightarrow CH_3COOH + H_2O$ $(CH_3COOH + H_2O \checkmark)$ 2
 - (c) spectrum C 1
 spectrum C only shows absorption at 1700 cm⁻¹ for the C=O 1
 the other two spectra contain the OH group absorption at approx 3000 cm⁻¹ 1

[9]

22. (a) (i) prop-2-en-1-ol CH₂=CHCH₂OH must show the C=C double bond acrolein

must clearly show the aldehyde group and the C=C

1

(ii) alkene/C=C double bond

acidified /H⁺ (b) (i)

1

dichromate/Cr₂O₇²

1

1

(ii) $CH_2CHCH_2OH/C_3H_6O/C_3H_5OH + [O] \longrightarrow CH_2CHCHO/C_3H_4O/C_3H_4O/C_3H_6O/C_3H_5O/C_3H_5O/C_3H_5O/C_3H_5O/C_3H_5O/C_3H_5O/C_3H$

 $C_2H_3CHO + H_2O$

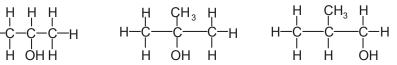
not CH₂CHCOH

[6]

23. (i) CH₂CHCH₂OOCCHCH₂ /(C₆H₈O₂) 1 1

 H_2O

2


(ii)

or

I mark if the ester group, I mark for the rest of the molecule. COO/CO₂ without displaying the ester, they can still get I mark.

[4]

24. (a)

(b) (i) orange to green/dark green/brown/black ✓ 1

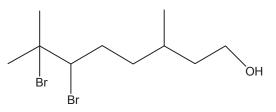
3

 $C_4H_9OH/C_4H_{10}O + 2[O] \rightarrow C_3H_7COOH + H_2O \checkmark \checkmark$ (ii)

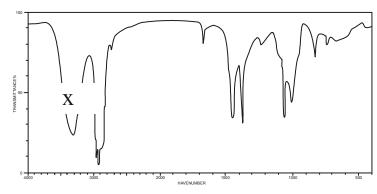
2

I mark available for correct formula of the carboxylic acid

Identify isomer 2-methylpropan-1-ol by appropriate (iii) number/name/formula ✓


(c) (i) CH_2 has mass = 14, $14 \times 4 = 56$ \checkmark

 $\therefore C_4H_8 \checkmark$ 1


- (ii) $C_4H_9OH \rightarrow C_4H_8 + H_2O \checkmark$
- (iii) Identify butan-2-ol by appropriate number/name/formula 1
- (d) (i) $H_2SO_4 \checkmark$
 - (ii) 0.06 **✓**
 - (iii) 60% ✓

[14]

- **25.** (a) (i) alkene ✓ 1 alcohol/hydroxy/hydroxyl ✓ 1
 - (b) (i) $I = \text{alkene \& II} = \text{alcohol... both are needed } \checkmark$
 - (ii) decolourised / colourless ✓
 - (iii) ✓

(iv) X as shown below ✓

- (c) (i) Ni/Pt/Rh/Pd ✓ 1
 - (ii) compound **B** is $C_{10}H_{22}O$ \checkmark
 - (iii) $C_{10}H_{20}O + H_2 \rightarrow C_{10}H_{22}O \checkmark$

[9]

14

26. (a) $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \checkmark \checkmark$

$2CO_2 + 3H_2O$ gets 1 mark

	(b)	Fermentation	1	
		$C_6H_{12}O_6 \to 2C_2H_5OH + 2CO_2$	1	
		Yeast /enzyme / temperature about 30 °C/ batch process ✓	1	
		<u>Hydration</u> of ethene. ✓	1	
		$C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$	1	
		Temp > 100 °C/Press 370 – 100 atm $/$ 6 –20 MPa/phosphoric acid catalyst/continuous process \checkmark	1	
		Glucose is obtained from plants ✓	1	
		Ethene is obtained from crude oil/cracking/fossil fuel ✓	1	
		glucose is renewable/ethene isn't ✓	1	
	1 mark available for <i>Quality of written communication</i> base the award of the mark on the ability to communicate the essential chemistry by correct use of at least two from:			
	fermentation/hydration/catalyst/renewable/sustainable/biofuel/			
	enzy	rmes/finite/cracking ✓	1	[40]
				[12]
27.	(a)	(i) C_4H_{10}	1	
		(ii) C ₂ H ₅ O ✓	1	
		(iii) B and E ✓	1	
		(iv) A and F ✓	1	
	(b)	$(C_4H_9OH \rightarrow) C_4H_8 + H_2O \checkmark$	1	

any unambiguous formula: 🗸 1 (c) CH₂CHCHCH₂ CH₂CHCHCH₂ buta-1,3-diene ✓ 1 name ecf to the structure only if structure above has formula C_4H_6 [7] Alkene/C=C ✓ 28. (i) 1 (a) Alcohol/ROH/hydroxy/hydroxyl/OH (not OH⁻ or hydroxide) ✓ 1 One of the C in both C=C is joined to two atoms or groups that (ii) are the same ✓ 1 decolourisation (of Br₂) ✓ (b) Observation 1 $C_{10}H_{18}OBr_4 \checkmark\checkmark$ 2 Molecular formula C₁₀H₁₈OBr₂ gets 1 mark CH₃COOH ✓ 1 (c) reagent $H_2SO_4/H^+/HCl$ (aq) or dilute loses the mark \checkmark catalyst 1 $C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$ (d) (i) 2 1 mark for H₂O and 1 mark for 2[O] The infra-red spectrum was of compound Y (ii) because absorption between 1680 − 1750 cm⁻¹ indicates a C=O ✓ 1 and the absence of a peak between 2500 – 3300 cm⁻¹ shows the absence of the OH hydrogen bonded in a carboxylic acid ✓ 1

[12]