1. Fractional distillation \checkmark

DO NOT ALLOW just 'distillation'

Because fractions have different boiling points \checkmark

For fractions, ALLOW components OR hydrocarbons OR compounds ALLOW condense at different temperatures ALLOW because van der Waals' forces differ between molecules IGNORE reference to melting points IGNORE 'crude oil' OR 'mixture' has different boiling points' but ALLOW 'separates crude oil by boiling points

[2]

1

1

2. (i) Decane \checkmark

DO NOT ALLOW deceane

(ii) Skeletal formula of branched $C_{10}H_{22}$ 🗸

Formula **must** be skeletal **AND** must not include any symbol, e.g. CH_3

Any possible skeletal formulae e.g.

(iii) Decane has more surface contact

OR branched chains have less surface contact \checkmark

Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact

Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓

ALLOW Decane has stronger van der Waals' forces **OR** branched chains have weaker van der Waals' forces More intermolecular forces is **not** sufficient

(iv) Branched chains have more efficient combustion
 OR decane has less efficient combustion ✓

ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR less likely to produce pre-ignition or knocking OR increases octane rating

ALLOW ORA for decane

Better fuel is **NOT** sufficient Burns more cleanly is **NOT** sufficient

[5]

2

1

2

1

3. (i) $C_{10}H_{22} + 15\frac{1}{2}O_2 \rightarrow 10CO_2 + 11H_2O$

ALLOW any correct multiple IGNORE state symbols

All four species correct \checkmark

balancing of four correct species \checkmark

(ii) $N_2 + O_2 \longrightarrow 2NO \checkmark$

ALLOW any correct multiple including fractions IGNORE state symbols The mark is for the equation IGNORE writing

[3]

4.

(i) $CH_4 + Br_2 \rightarrow CH_3Br + HBr \checkmark$

ALLOW any correct multiple IGNORE state symbols

(ii) Dibromomethane
 OR tribromomethane
 OR tetrabromomethane ✓

ALLOW 1,1-dibromomethane OR 1,1,1-tribromomethane etc ALLOW 1-dibromomethane DO NOT ALLOW 2,2-dibromomethane etc ALLOW correct formulae e.g. CH₂Br₂

(iii) $Br_2 \rightarrow 2Br$

OR homolytic fission of bromine \checkmark

 $Br + CH_4 \rightarrow HBr + CH_3 \checkmark$ $CH_3 + Br_2 \rightarrow CH_3Br + Br \checkmark$

 $Br + CH_3 \rightarrow CH_3Br$ $OR Br + Br \rightarrow Br_2 \checkmark$

Ethane made when two methyl radicals react **OR** $CH_3 + CH_3 \rightarrow C_2H_6 \checkmark$

All equations can be described in words Radicals do NOT need a single dot IGNORE any state symbols ALLOW any other suitable termination

Quality of Written Communication – Consists of

initiation step linked to correct equation propagation step linked to one equation in which there is a radical on the left and a radical on the right termination step linked to correct equation:

2 names of steps linked to correct equations \checkmark **BUT**

3 names of steps linked to correct equations $\checkmark\checkmark$

If no equations are given to link the names of the step then award one mark for mention of all three steps

[9]

7

1

5. Cracking ✓

ALLOW catalytic or thermal cracking \checkmark

[1]

1

1

- 6. (i) $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O \checkmark$ *ALLOW* any correct multiples *IGNORE* state symbols
 - (ii) limited supply of air OR not enough O₂ ✓
 ALLOW use of air or oxygen
 IGNORE it is not completely oxidised

[2]

7. skeletal formula of a branched isomer of C_8H_{18} \checkmark

skeletal formula of a cyclic hydrocarbon **OR** skeletal formula of substituted arene of C_8H_{10} *ALLOW* any ring between C_3 and C_8 with 8 carbon atoms per molecule *IGNORE* wrong names If two correct structural or displayed formulae drawn award one mark

[2]

8.

(i)

 $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O \rightarrow Cl + O_2 \checkmark$ overall: $O_3 + O \rightarrow 2O_2 \checkmark$

OR

 $Cl + CH_4 \rightarrow CH_3 + HCl \checkmark$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl \checkmark$ overall: $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl \checkmark$ Marks must come from one or other of the radical process and not from both of them. If two processes are described then an incorrect step in one process will contradict a correct step in the other process. ALLOW overall equation mark even if the steps are wrong the radicals do NOT need a single dot **IGNORE** any state symbols ALLOW $Cl + O_3 \rightarrow ClO + O_2 \checkmark$ $ClO + O_3 \rightarrow Cl + 2O_2 \checkmark$ overall: $2O_3 \rightarrow 3O_2 \checkmark$ ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong

hydrocarbon used e.g. C_2H_4 is used in first step

(ii) ΔH shown **and** products below reactants \checkmark E_a shown \checkmark

 E_c shown < E_a \checkmark

NOT double headed arrows but apply ecf for more than one double headed arrow

ALLOW one mark if two correctly labelled curves are drawn but the arrows are not shown or are incorrectly drawn The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod

[6]

3

9.	(i)	120–130 (1)	1	
	(ii)	boiling point increases with increase in <i>M</i> r/molecular formula/number of carbon atoms/chain length (1) more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces (1) \Box	2	
		surface interactions, van der waar forces (1)	2	[3]

- **10.** $C_9H_{20} \rightarrow C_7H_{16} + C_2H_4$ (1)
- 11. (i) Any branched isomer of heptane with correct name, e.g.

2-methylhexane (1)

2

[1]

(ii)
$$(ii) \rightarrow (ii) \rightarrow (i$$

13. separation by (differences in) boiling point

$$C_7H_{16} \rightarrow C_4H_{10} + C_3H_6$$

1

(iii) any dichlorobutane except 2,3-dichlorobutane.

[9]

15.	Bonding:	$\pi\text{-bond formed by overlap of (adjacent) p-orbitals/π-bond labelled on diagram diagram to show formation of the π-bond \underset{H_{3}C}{\overset{H}{\longrightarrow}} \underset{H}{\overset{H}{\longrightarrow}} \underset{for \text{ diagram mark}}{\overset{H}{\longrightarrow}} \underset{for \text{ diagram mark}}{\overset{H}{\longrightarrow}} \underset{H}{\overset{H}{\longrightarrow}} \underset{for \text{ diagram mark}}{\overset{H}{\longrightarrow}} \underset{H}{\overset{H}{\longrightarrow}} \underset{h}{\overset{H}{\overset{H}{\longrightarrow}} \underset{h}{\overset{H}{\overset{H}{\longrightarrow}}} \underset{h}{\overset{H}{\overset{H}{\longrightarrow}} \underset{h}{\overset{H}{\overset{H}{\longrightarrow}} \underset{h}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\longrightarrow}}} \underset{h}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset{H}{\overset$	1 1	
		or		
	Shape/bon	d angles:		
		tetrahedral around the CH ₃	1	
		bond angle = 109°28/ (109-110°)	1	
		trigonal planar around each C in the C=C	1	
		bond angle = 120° (118-122°)		
	Cis-trans	Cis-trans		
		<i>cis</i> & <i>trans</i> correctly labelled eg but-2-ene require a double bond because it restricts rotation each C in the C=C double bond must be bonded to two different atoms or groups	1 1 1	
	QWC	Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric	1	[40]
				[10]
16.	(i) (free	radical) substitution	1	
	(ii) 1-bro	omohexane, 2-bromohexane and 3-bromohexane	3	[4]

[4]

cracking	suitable balanced equation	1		
reforming	1 I	-		
compound				
suitable balanced equation with H_2				
(balanced equation showing formation of a ring scores both marks)				
isomerisat	ion suitable balanced equation			
The processed products are:				
•	used in fuels/used in petrol			
•	better /more efficient fuels/increase octane number/rating			
• alkenes (from cracking) produce polymers/alcohols				
•		~		
•	H ₂ used for Haber process/fuels/hydrogenation of oils	3		

 $\mathrm{C_6H_{11}OH} \,/\, \mathrm{C_6H_{12}O} \rightarrow \mathrm{C_6H_{10}+H_2O}$

[9]

(ii)

from the diol allow

from the Cl-alcohol allow

1

2

[6]

19.	(a)	(i)	compound/molecule containing hydrogen and carbon only	1
		(ii)	C ₁₀ H ₂₂	1
		(iii)	$C_5H_{11} \{ ecf from (ii) \}$	1
	(b)	(i)	(a particle that) contains/has a single/unpaired electron	1
		(ii)	UV (light) /sunlight/high temp	1
		(iii)	homolytic (fission)/ homolysis	1
		(iv)	$C_{12}H_{26} + Cl \bullet \rightarrow \bullet C_{12}H_{25} + HCl$	1
			(the dot for the free radical does not have to be on the C)	
			$\bullet C_{12}H_{25} + Cl_2 \rightarrow C_{12}H_{25}Cl + Cl \bullet$	1
		(v)	six	1
	(c)	(i)	$C_{12}H_{26} \rightarrow 2C_2H_4 + 1C_8H_{18}$	2
			(1 mark for correct formula of octane or ethene)	
		(ii)	octane/ ecf from (c) (i)	1

- **20.** (a) octane, 400 ± 51 hexadecane. 545 ± 5 if °C penalise once. 1
 - (b) fractional distillation

[16]

long chain have greater surface area/surface interactions/more VdW forces or converse argument about short/branched chains.

(d) (i)

[16]

21.	(i)	$Cl_2 \rightarrow 2Cl \bullet$	1	
	(ii)	uv (light)/high temperature/min of 400 C/sunlight	1	
	(iii)	$Cl \bullet + C_6 H_{12} \longrightarrow C_6 H_{11} \bullet + HCl$		
		$C_6H_{11} \bullet + Cl_2 \longrightarrow C_6H_{11}Cl + Cl \bullet$	1	
	(iv)	react with each other/suitable equation		
		solvent $\mathbf{W} = $ water/aqueous/aqueous ethanol	1	
		solvent $\mathbf{X} = \text{ethanol/alcohol}$	1	
				[5]
22.	ident	ifies the three process as cracking, reforming, isomerisation	1	
	reco	gnises the need for high temperature or a catalyst	1	
	equa	tion for cracking	1	
	equa	tion for isomerisation	1	
	state	that reforming converts chains into rings/cyclic compounds	1	
	equa	tion for reforming (balanced with H_2 could score two marks)	1	
	oil is	1		
	ethai	1		
	from	1		
	C ₂ H	1		
	QWO			
	•	organise relevant information clearly and coherently, using specialist vocabulary when appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renewable/ feedstock/ finite/fermentation/non-renewable/sustainable/zeolite/bimetallic catayst/ etc)		
	•	reasonable spelling, punctuation and grammar throughout	1	[11]
				[,,]
		aqueous/aqueous ethanol	1	
solve	ent X =	ethanol/alcohol	1	[5]
				r.1

23. (a) C₆H₁₄

14

(b)	(i)	boiling point increases with increase in $M_R/molecular$ formula/N° of carbon atoms/chain length	1	
	(ii)	more intermolecular forces/electrons/surface area/		
		surface interactions/van der Waal forces	1	
	(iii)	120 – 130 °C	1	[4]

24. (i)
$$C_9H_{20} \longrightarrow C_7H_{16} + C_2H_4$$
1(ii) $C_2H_4 + H_2O \longrightarrow C_2H_5OH$ 1temperature > 100 °C/ steam1phosphoric acid (catalyst)1

2

[4]

(b)

$$C_7H_{16} \longrightarrow C_6H_{11}CH_3/ + H_2$$

(c) more efficient fuel/better fuel/ higher octane number/reduces

www.accesstuition.com

knocking/more volatile/lower boiling points/burn better/burn more easily/quicker \checkmark

16

[15]

1

[5]

27.	(i)	homolytic 🗸	1	
	(ii)	$Cl_2 \rightarrow 2Cl \bullet$ (need \bullet on the Cl penalise only once in the 3 equations) \checkmark	1	
	(iii)	I $(C_5H_{10}) + \underline{Cl} \rightarrow (\bullet C_5H_9) + \underline{HCl} \checkmark$	1	
		II $(\bullet C_5H_9) + \underline{Cl_2} \rightarrow \underline{C_5H_9Cl} + \underline{Cl} \checkmark$	1	
				[4]
28.		ation in boiling points. (max = 4 marks)		
	As cl	hain length increases, boiling point increases \checkmark	1	
		to increased number of electrons/ surface area/ more van der Waals forces / molecular forces/ more surface interactions ✓	1	
	As b	ranching increases, boiling point decreases \checkmark	1	
	straig	ght chains can pack closer together/ straight chains have greater surface area/ \checkmark	1	
	more	e van der Waals forces /more intermolecular forces/ more surface interactions		
	Isom	nerisation (max = 4 marks)		
		(produces) branched chain alkanes \checkmark	1	
		equation to illustrate any isomerisation (of octane) \checkmark	1	
	\sim	into any one of or	\downarrow	
		or any other branched isomer of octane		
	Bran	sched chains are better/more efficient fuels/used as additives \checkmark	1	
		use they are more volatile/easier to ignite/burn more easily/higher octane uber(rating)/lower boiling points/reduces knocking (pinking) ✓	1	
	QWO			
	•	use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition		
	•	reasonable spelling, punctuation and grammar throughout \checkmark	1	[9]