1. Fractional distillation

DO NOT ALLOW just 'distillation'
Because fractions have different boiling points
For fractions, $\boldsymbol{A L L O W}$ components $\boldsymbol{O R}$ hydrocarbons $\boldsymbol{O R}$ compounds
ALLOW condense at different temperatures
ALLOW because van der Waals' forces differ between molecules
IGNORE reference to melting points
IGNORE 'crude oil' OR 'mixture' has different boiling points'
but ALLOW'separates crude oil by boiling points
2. (i) Decane \checkmark

DO NOT ALLOW deceane

(ii) Skeletal formula of branched $\mathrm{C}_{10} \mathrm{H}_{22}$

Formula must be skeletal
AND must not include any symbol, e.g. CH_{3}
Any possible skeletal formulae e.g.

(iii) Decane has more surface contact

OR branched chains have less surface contact
Both answers need to be comparisons
Assume 'it' refers to decane
IGNORE surface area
ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact

Decane has more van der Waals' forces
OR branched chains have fewer van der Waals' forces
ALLOW Decane has stronger van der Waals' forces OR branched chains have weaker van der Waals' forces More intermolecular forces is not sufficient
(iv) Branched chains have more efficient combustion OR decane has less efficient combustion

ALLOW branched chains are easier to burn
OR easier to combust
OR burn better
OR more efficient fuel
OR less likely to produce pre-ignition or knocking
OR increases octane rating
ALLOW ORA for decane
Better fuel is NOT sufficient
Burns more cleanly is NOT sufficient
(i)

$$
\begin{aligned}
\mathrm{C}_{10} \mathrm{H}_{22}+151 / 2 \mathrm{O}_{2} \longrightarrow 10 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O} \\
\text { ALLOW any correct multiple } \\
\text { IGNORE state symbols }
\end{aligned}
$$

All four species correct
balancing of four correct species
(ii) $\quad \mathrm{N}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO} \checkmark$

ALLOW any correct multiple including fractions IGNORE state symbols
The mark is for the equation
IGNORE writing
4. (i) $\mathrm{CH}_{4}+\mathrm{Br}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr} \checkmark$ ALLOW any correct multiple IGNORE state symbols
(ii) Dibromomethane

OR tribromomethane
OR tetrabromomethane \checkmark
ALLOW 1,1-dibromomethane
OR 1,1,1-tribromomethane etc
ALLOW 1-dibromomethane
DO NOT ALLOW 2,2-dibromomethane etc
ALLOW correct formulae e.g. $\mathrm{CH}_{2} \mathrm{Br} r_{2}$
(iii) $\mathrm{Br}_{2} \rightarrow 2 \mathrm{Br}$

OR homolytic fission of bromine

$$
\begin{aligned}
& \mathrm{Br}+\mathrm{CH}_{4} \rightarrow \mathrm{HBr}+\mathrm{CH}_{3} \checkmark \\
& \mathrm{CH}_{3}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{Br} \checkmark \\
& \mathrm{Br}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{Br} \\
& \mathbf{O R ~ B r}+\mathrm{Br} \rightarrow \mathrm{Br}_{2} \checkmark
\end{aligned}
$$

Ethane made when two methyl radicals react

$$
\begin{aligned}
& \text { OR } \mathrm{CH}_{3}+\mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \checkmark \\
& \quad \text { All equations can be described in words } \\
& \quad \text { Radicals do NOT need a single dot } \\
& \\
& \\
& \text { IGNORE any state symbols } \\
& \text { ALLOW any other suitable termination }
\end{aligned}
$$

Quality of Written Communication - Consists of
initiation step linked to correct equation
propagation step linked to one equation in which there is a radical on
the left and a radical on the right
termination step linked to correct equation:
2 names of steps linked to correct equations \checkmark
BUT
3 names of steps linked to correct equations $\checkmark \checkmark$
If no equations are given to link the names of the step then
award one mark for mention of all three steps
5. Cracking \checkmark

ALLOW catalytic or thermal cracking

6. (i) $\mathrm{C}_{8} \mathrm{H}_{18}+8 \frac{1}{2} \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}+9 \mathrm{H}_{2} \mathrm{O}$

ALLOW any correct multiples
IGNORE state symbols
(ii) limited supply of air OR not enough O_{2} ALLOW use of air or oxygen
IGNORE it is not completely oxidised
7. skeletal formula of a branched isomer of $\mathrm{C}_{8} \mathrm{H}_{18}$
skeletal formula of a cyclic hydrocarbon OR skeletal formula of substituted arene of $\mathrm{C}_{8} \mathrm{H}_{10} \checkmark$

ALLOW any ring between C_{3} and C_{8} with 8 carbon atoms per molecule
IGNORE wrong names
If two correct structural or displayed formulae drawn award one mark
8. (i) $\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2}$
$\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark$
overall: $\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}$
OR
$\mathrm{Cl}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{HCl}$
$\mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}$
overall: $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
Marks must come from one or other of the radical process and not from both of them.
If two processes are described then an incorrect step in one process will contradict a correct step in the other process.
ALLOW overall equation mark even if the steps are wrong
the radicals do NOT need a single dot
IGNORE any state symbols
ALLOW
$\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \checkmark$
$\mathrm{ClO}+\mathrm{O}_{3} \rightarrow \mathrm{Cl}+2 \mathrm{O}_{2} \checkmark$
overall: $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong hydrocarbon used e.g. $C_{2} H_{4}$ is used in first step
(ii) $\Delta \mathrm{H}$ shown and products below reactants
E_{a} shown \checkmark
E_{c} shown $<\mathrm{E}_{\mathrm{a}} \checkmark$

NOT double headed arrows but apply ecffor more than one double headed arrow
ALLOW one mark if two correctly labelled curves are drawn but the arrows are not shown or are incorrectly drawn The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod
9. (i) 120-130 (1)
(ii) boiling point increases with increase in $\mathrm{Mr} /$ molecular formula/number of carbon atoms/chain length (1)
more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces (1) \square
10. $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}$ (1)
11. (i) Any branched isomer of heptane with correct name, e.g.

2-methylhexane (1)
(ii)

12. (i) species with an unpaired electron (1)
(ii) uv (light)/high temperature $/$ min of $400^{\circ} \mathrm{C} /$ sunlight (1) 1
(iii) homolytic (fission) (1)
(iv) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \bullet$ (1) $\rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{HCl}$ (1) $\mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2}(\mathbf{1}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \bullet(\mathbf{1}) \quad 2$
13. separation by (differences in) boiling point
$\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{3} \mathrm{H}_{6}$
(i) Any of

(ii) $\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{H}_{2} \quad$ (or by structural formula)
(i) 2,2-dimethylpentane
(ii) 3-methylhexane, 3,3 dimethylpentane or (3)-ethylpentane in any unambiguous form.
(iii) 2,2,3-trimethylbutane 1
(iv) if branched, difficult to pack/less surface interaction/less points of contact 1 less van der Waals' forces/ less intermolecular bonds/less energy needed to boil 1
14. (a) (i) uv/sunlight/high temperature (range $400-700^{\circ} \mathrm{C}$) 1
(ii) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet \quad 1$ $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \bullet \rightarrow \mathrm{HCl}+\bullet \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet \quad 1$ $\bullet \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \bullet \quad 1$
(iii) any two free radicals from (a) (ii) 1
(iv) homolytic (fission) 1
(b) (i) 2,3-dichlorobutane 1
(ii) 1

(iii) any dichlorobutane except 2,3-dichlorobutane. 1
15. Bonding: π-bond formed by overlap of (adjacent) p-orbitals $/ \pi$-bond labelled on diagram
diagram to show formation of the π-bond

or

Shape/bond angles:

tetrahedral around the $\mathrm{CH}_{3} \quad 1$
bond angle $=109^{\circ} 28 /\left(109-110^{\circ}\right) \quad 1$
trigonal planar around each C in the $\mathrm{C}=\mathrm{C} \quad 1$
bond angle $=120^{\circ}\left(118-122^{\circ}\right) \quad 1$

Cis-trans

cis \& trans correctly labelled eg but-2-ene $\quad 1$
require a double bond because it restricts rotation 1
each C in the $\mathrm{C}=\mathrm{C}$ double bond must be bonded to two different atoms or groups
QWC Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric
16. (i) (free radical) substitution 1
(ii) 1-bromohexane, 2-bromohexane and 3-bromohexane 3
17. Recognises that either a catalyst or high temperature (heat is not 1 sufficient) is required
$\left.\begin{array}{lcc}\begin{array}{l}\text { cracking } \\ \text { reforming } \\ \text { compound }\end{array} & \text { equation or statement indicating formation of a ring/cyclic }\end{array}\right) 1$
(balanced equation showing formation of a ring scores both marks) 1
isomerisation suitable balanced equation
The processed products are:- used in fuels/used in petrol- better /more efficient fuels/increase octane number/rating

- alkenes (from cracking) produce polymers/alcohols
- H_{2} used for Haber process/fuels/hydrogenation of oils 3
QWC SPAG - look for two complete sentence that present a 1
coherent argument

18. (a) (i)

(ii) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /$ (hot) pumice $/ \mathrm{H}_{3} \mathrm{PO}_{4}$
($\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ or dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ loses the mark)
(iii)

$$
\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH} / \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \mathrm{O}
$$

(b) (i)

19. (a) (i) compound/molecule containing hydrogen and carbon only 1
(ii) $\mathrm{C}_{10} \mathrm{H}_{22} \quad 1$
(iii) $\mathrm{C}_{5} \mathrm{H}_{11}\{$ ecf from (ii) $\} \quad 1$
(b) (i) (a particle that) contains/has a single/unpaired electron 1
(ii) UV (light) /sunlight/high temp 1
(iii) homolytic (fission)/ homolysis $\quad 1$
(iv) $\mathrm{C}_{12} \mathrm{H}_{26}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{C}_{12} \mathrm{H}_{25}+\mathrm{HCl} \quad 1$
(the dot for the free radical does not have to be on the C)
$\bullet \mathrm{C}_{12} \mathrm{H}_{25}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Cl}+\mathrm{Cl} \bullet$
(v) $\operatorname{six} \longrightarrow 1$
(c) (i) $\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+1 \mathrm{C}_{8} \mathrm{H}_{18}$
(1 mark for correct formula of octane or ethene)
(ii) octane/ ecf from (c) (i)
(d) (i)

20. (a) octane,
hexadecane. $545+/-5$
$400+/-51$
if ${ }^{\circ} \mathrm{C}$ penalise once.
(b) fractional distillation
(c) (i)

(ii) 2-methylpentane $\quad 1$
(iii) \mathbf{C}, \mathbf{B} and \mathbf{A}
(iv) the more branching/the shorter the chain... the lower the boiling point/ less energy needed to separate the molecules
long chain have greater surface area/surface interactions/more VdW forces or converse argument about short/branched chains.
(d) (i) not just $\mathrm{C}_{6} \mathrm{H}_{12}$
 or
 or

1
(ii) $\mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}=\mathrm{H}_{12}+\mathrm{H}_{2}$
(iii) better fuels/more volatile/lower boiling point/reduces knocking/ increases octane rating/used as (petrol) additives
(e) (i) $\quad M_{r}$ of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}=74$
$\%$ oxygen $=(16 / 74) \times 100=21.6 \%$
(ii) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

1 mark for CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ only 2
21. (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet 1$
(ii) uv (light)/high temperature/min of $400 \mathrm{C} /$ sunlight 1
(iii) $\mathrm{Cl} \bullet+\mathrm{C}_{6} \mathrm{H}_{12} \quad \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{HCl}$
$\mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{Cl}_{2} \quad \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}+\mathrm{Cl} \bullet \quad 1$
(iv) react with each other/suitable equation
solvent \mathbf{W} = water/aqueous/aqueous ethanol 1
solvent $\mathbf{X}=$ ethanol/alcohol 1
22. identifies the three process as cracking, reforming, isomerisation 1
recognises the need for high temperature or a catalyst 1
equation for cracking 1
equation for isomerisation 1
state that reforming converts chains into rings/cyclic compounds 1
equation for reforming (balanced with H_{2} could score two marks) 1
oil is finite/non-renewable 1
ethanol is renewable/sustainable 1
from plants/crops/sugar cane/sugar beet/glucose/sugar/ fermentation 1
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad 1$
QWC

- organise relevant information clearly and coherently, using specialist vocabulary when appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renewable/ feedstock/ finite/fermentation/non-renewable/sustainable/zeolite/bimetallic catayst/ etc)
- reasonable spelling, punctuation and grammar throughout
$\mathbf{W}=$ water/aqueous/aqueous ethanol 1
solvent $\mathbf{X}=$ ethanol/alcohol 1

23. (a) $\mathrm{C}_{6} \mathrm{H}_{14} \quad 1$
(b) (i) boiling point increases with increase in $\mathrm{M}_{\mathrm{R}} /$ molecular formula $/ \mathrm{N}^{\circ}$ of carbon atoms/chain length
$\begin{array}{ll}\text { (ii) more intermolecular forces/electrons/surface area/ } & \\ \text { surface interactions/van der Waal forces } & 1\end{array}$
(iii) $120-130^{\circ} \mathrm{C} \quad 1$
24. (i) $\mathrm{C}_{9} \mathrm{H}_{20} \longrightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}$
(ii) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad 1$ temperature $>100^{\circ} \mathrm{C} /$ steam $\quad 1$ phosphoric acid (catalyst) 1
25. (a) (i)

(ii) $85-98^{\circ} \mathrm{C}$
(b)

(c) more efficient fuel/better fuel/ higher octane number/reduces
```
knocking/more volatile/lower boiling points/burn better/burn more easily/quicker
26. (a) (i) reaction 1 (i)
(ii) reaction \(4 \longrightarrow 1\)
(iii) reaction \(3 \longrightarrow 1\)
(b) (i) lone pair/electron pair donor 1


Correct dipole 1
Curly arrow from the O in the \(\mathrm{OH}^{-}\)to C in the \(\mathrm{CH}_{2} \quad 1\)
Curly arrow to show movement of bonded pair in the \(\mathrm{C}-\mathrm{Cl}\) bond 1
\(\mathrm{Cl}^{-}\)as a product 1
(c) (i) same molecular formula, different structure/arrangement of atoms. 2
(same formula, different structure.)
(ii)
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{l}{} & V \\
B & \\
& \\
\hline
\end{tabular}
(d) (i) addition, (not additional) 1
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii) 1

27. (i) homolytic \(\checkmark\) 1
(ii) \(\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet\) (need \(\bullet\) on the Cl ... penalise only once in the 3 equations) \(\checkmark 1\)
(iii) \(\begin{array}{lll}\text { I } & \left(C_{5} H_{l 0}\right)+\underline{\mathrm{Cl} \bullet} \rightarrow\left(\bullet \mathrm{C}_{5} H_{9}\right)+\underline{\mathrm{HCl}} \checkmark & 1\end{array}\) II \(\quad\left(\bullet \mathrm{C}_{5} H_{9}\right)+\underline{\mathrm{C}_{2}} \rightarrow \underline{\mathrm{C}}_{\underline{5}} \underline{\mathrm{H}_{2}} \underline{\mathrm{Cl}}+\underline{\mathrm{Cl} \bullet} \checkmark \quad 1\)
28. Variation in boiling points.
\[
(\max =4 \text { marks })
\]

As chain length increases, boiling point increases
due to increased number of electrons/ surface area/ more van der Waals forces / intermolecular forces/more surface interactions \(\checkmark\)
As branching increases, boiling point decreases \(\checkmark \quad 1\)
straight chains can pack closer together/ straight chains have greater surface area/ \(\checkmark \quad 1\) more van der Waals forces /more intermolecular forces/ more surface interactions

\section*{Isomerisation}


( \(\boldsymbol{m a x}=\mathbf{4} \mathbf{~ m a r k s}\) )
(produces) branched chain alkanes \(\checkmark \quad 1\)
equation to illustrate any isomerisation (of octane) \(\checkmark 1\) into any one of
 or
 or


Branched chains are better/more efficient fuels/used as additives
because they are more volatile/easier to ignite/burn more easily/higher octane number(rating)/lower boiling points/reduces knocking (pinking)

QWC mark
- use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition
- reasonable spelling, punctuation and grammar throughout \(\checkmark\) 1```

