1. Propene ✓

ALLOW prop-1-ene ✓ *DO NOT ALLOW* prop-2-ene

2. (i) $-CH_2CHCl + 2\frac{1}{2}O_2 \rightarrow 2CO_2 + H_2O + HCl \checkmark$

(ii) Alkali OR base OR carbonate 🗸

ALLOW correct formula of or named carbonate OR alkali OR base Correct name and wrong formula does not score

[2]

[1]

1

1

3. Any two marks from the following:

Develop photodegradable polymers \checkmark

Develop biodegradable polymers **OR** develop compostable polymers ✓

Develop techniques for cracking polymers **OR** develop use as a chemical feedstock ✓

Develop ways of making polymers from plant-based substances **OR** reduce the need to use finite raw materials such as crude oil \checkmark

Designing processes with high atom economy **OR** reduce waste products during manufacture \checkmark

Develop ways of sorting AND recycling polymers ✓

[2]

4.

one mark for each correct structure $\checkmark\checkmark\checkmark\checkmark$

ALLOW skeletal formula OR displayed formulae IGNORE molecular formulae IF two answers given e.g. name and structure then both must be correct to be given a mark

ALLOW methylpropane OR (CH₃)₃CH \checkmark

ALLOW 1, 2-dibromo-methylpropane OR $CH_2BrCBr(CH_3)_2 \checkmark$

ALLOW 1-bromo-methylpropane OR CH_2 Br CH (CH_3)₂ \checkmark

ALLOW 2-bromo-methylpropane OR $CH_3 CBr (CH_3)_2 \checkmark$

ALLOW ecf if wrong carbon skeleton is used in all of the structures mark first structure wrong and then apply ecf for the rest

[4]

curly arrow from double bond to Br^{δ^+} and curly arrow from Br— 5. Br bond pair to $Br^{\delta-}$ in 1st step \checkmark curly arrow in 2nd step from bromide ion \checkmark correct dipole shown on $Br_2 \checkmark$ correct carbocation shown \checkmark

Curly arrow must start from the double bond and not a carbon atom, other curly arrow must start from Br-Br bond

ALLOW curly arrow from any part of bromide ion The bromide ion does not need to show a lone pair Dipole must be partial charge and not full charge Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle)

ALLOW carbocation on carbon 1 where electrophile attacks carbon 2 i.e. $^{+}CH_{2}CBr(CH_{3})_{2}$

6. (i)

Free bonds at bond ends must be present ALLOW minor slip e.g. missing one hydrogen and left as a stick ALLOW more than two repeat units but must be a whole number of repeat units IGNORE brackets, use of numbers and n in the drawn structure

[4]

(ii) $H \qquad H \qquad F \qquad ALLOW skeletal formula \\ ALLOW CH_2CHF$

[2]

1

7. Any two from:

separation into types and recycling **OR** sort plastics, melt and remould \checkmark

combustion for energy generation \checkmark

used for cracking **OR** feedstock for plastics or chemicals *IGNORE* biodegradable used as a fuel is insufficient

> releases energy is insufficient ALLOW burning plastics to release energy ALLOW organic feedstock / raw materials to make organic compounds

[2]

8. 1st bullet

product: CH₃CH₂CHBrCH₂Br (1) equation: CH₃CH₂CH=CH₂ + Br₂ \rightarrow CH₃CH₂CHBrCH₂Br (1) products: CH₃CH₂CHBrCH₃ and CH₃CH₂CH₂CH₂Br (1) (or statement that 2-bromo- is formed) equation: CH₃CH=CHCH₃ + HBr \rightarrow CH₃CH₂CHBrCH₃ (1) (*i.e.* for one product) products: CH₃CH₂CHOHCH₃ and CH3CH2CH2CH2OH (1) (or statement that 2-ol is formed) equation: CH₃CH=CHCH₃ + H₂O \rightarrow CH₃CH₂CHOHCH₃ (1) (*i.e.* for one product)

2nd bullet

3rd bullet

two (1) (1) from energy from incineration development of biodegradable polymers cracking of waste polymers

phosphoric acid/H⁺/sulphuric acid 1

(ii) lone/electron pair of electrons acceptor

(i)

(a)

9.

Step 1	curly arrow from π -bond to H ⁺	1
Step 2	curly arrow from lone pair on the $O^{\delta-}$ to C+	1
Step 3	curly arrow from O—H bond to O+	1

(ii) catalyst ... no marks because it is **not** consumed/used up in the reaction/owtte

[6]

10. (a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene

1

1

2

2

1

[10]

www.accesstuition.com

[3]

2

1

1

1

1

1

1

11. (a)

~ /	(ii)	Hs are diagonal to each other in the <i>trans/</i> difference clearly shown in a diagram (the product is saturated hence) there is no restricted rotation/single	1	
		bonds allow rotation/because C=C prevents rotation		[6]

12. H₂

Ni/Pt/Pd (catalyst)

C+

[2]

13.	(i)	alkene	1	
		bromine	1	
		decolourises	1	
	(ii)	3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene	1	
				[4]

14. margarine

Ni catalyst

hydrogen/ hydrogenated

unsaturated vegetable oil/fat

poly(propene)

equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator		
Problems with disposal		
non-biodegradable/don't decompose/not broken down by bacteria etc	1	
when burnt produces toxic fumes	1	
Future methods of disposal		
recycling (to produce new polymers)	1	
incineration for energy (production)		
cracking/owtte (to produce useful organic molecules)		
use gas scrubbers to reduce toxic fumes		
any two		
max = 9		
recycling (to produce new polymers) incineration for energy (production) cracking/owtte (to produce useful organic molecules) use gas scrubbers to reduce toxic fumes <i>any two</i>	1 1	

QWC

Answer is well organised/structure and using at least three of:

catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.

in the correct context.

[10]

1

1

1 1

1

1

1

15.	(a)	(i)	C_5H_8	1
		(ii)	C_5H_8	1

(b) (i) Ni/Pt/Pd

www.accesstuition.com

[5]

10

[13]

- (c) (i) same molecular formula , different structure/arrangement of atoms. (same formula, different structure.)
 - (ii)

(d) (i) addition, (not additional) 1 (ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1 (iii) $-\frac{H}{C} - \frac{C}{C} - \frac{C}$

(ii)

www.accesstuition.com

		[5]
1, 2-dibromopropane as product	1	
correct intermediate/carbonium ion/carbocation and curly arrow from Br ⁻ to C+	1	
dipole on Br-Br and curly arrow showing movement of bonded pair of electrons	1	
curly arrow from C=C to Br^{δ^+}	1	

2

2

22.	CH ₃ CBr ₂ CH ₃	1	
	CH ₃ CHBrCH ₂ Br	1	
	CH ₃ CH ₂ CHBr ₂	1	
	(CH ₃ CHBrCH ₂ Br has a chiral centre, hence optical isomers of 1, 2-dibromopropane are acceptable but must be drawn with 'wedge-shape' bonds and be non-superimposable mirror images)		[3]

23.	(i)	<i>unsaturated</i> contains a double/multiple/ π bond \checkmark	1
		<i>hydrocarbon</i> contains hydrogen and carbon only . \checkmark	1
	(ii)	angle a 109 −110° ✓	1
		angle b 117 −120° ✓	1

(iii)

Diagram to show a minimum of 2 carbons, each with a $\sigma\text{-bond}$ and p-orbitals \checkmark

Overlap of adjacent p-orbitals (in words or in diagram) \checkmark

[6]

24. (i) *electrophile*: lone pair (of electrons) acceptor. ✓
(ii)

1

1

1

1

[5]

1

- 25. (i) Addition (not additional) \checkmark
 - (ii) 🗸

(iii)

(iv) Poly(but-1-ene) 🗸

[4]

27.

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made $\checkmark \checkmark$

[2]

28.	(a)	(i)	Alkene/C=C ✓		1	
			Alcohol/ROH/hyd	1		
		(ii)	One of the C in bo are the same \checkmark	th C=C is joined to two atoms or groups that	1	
	(b)	Obse	rvation	decolourisation (of Br ₂) \checkmark	1	
		Mole	cular formula	$C_{10}H_{18}OBr_4 \checkmark \checkmark$	2	
				C ₁₀ H ₁₈ OBr ₂ gets 1 mark		
	(c)	reagent catalyst		CH₃COOH ✓	1	
				$\rm H_2SO_4/\rm H^+/\rm HC{\it l}$ (aq) or dilute loses the mark \checkmark	1	
	(d)	(i)	(i) $C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$			
			1 mark for H_2O and			
		(ii)	The infra-red spec			
			because absorption between $1680 - 1750 \text{ cm}^{-1}$ indicates a C=O \checkmark and the absence of a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence			
			of the OH hydroge	en bonded in a carboxylic acid 🗸	1	
					[12]