1. Propene

> ALLOW prop-1-ene \checkmark DO NOT ALLOW prop-2-ene
2. (i) $-\mathrm{CH}_{2} \mathrm{CHCl}-+2 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl}$
(ii) Alkali OR base OR carbonate

ALLOW correct formula of or named carbonate OR alkali OR base
Correct name and wrong formula does not score
3. Any two marks from the following:

Develop photodegradable polymers
Develop biodegradable polymers
OR develop compostable polymers
Develop techniques for cracking polymers
OR develop use as a chemical feedstock
Develop ways of making polymers from plant-based substances
OR reduce the need to use finite raw materials such as crude oil
Designing processes with high atom economy
OR reduce waste products during manufacture
Develop ways of sorting AND recycling polymers
4.

one mark for each correct structure ALLOW skeletal formula OR displayed formulae IGNORE molecular formulae
IF two answers given e.g. name and structure then both must be correct to be given a mark
ALLOW methylpropane $\operatorname{OR}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$
ALLOW 1, 2-dibromo-methylpropane OR $\mathrm{CH}_{2} \mathrm{BrCBr}\left(\mathrm{CH}_{3}\right)_{2}$
ALLOW 1-bromo-methylpropane OR $\mathrm{CH}_{2} \mathrm{Br} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
ALLOW 2-bromo-methylpropane OR $\mathrm{CH}_{3} \mathrm{CBr}\left(\mathrm{CH}_{3}\right)_{2}$
ALLOW ecf if wrong carbon skeleton is used in all of the structures mark first structure wrong and then apply ecf for the rest
5. curly arrow from double bond to $\mathrm{Br}^{\delta+}$ and curly arrow from $\mathrm{Br}-$ Br bond pair to $\mathrm{Br}^{\delta-}$ in 1st step
curly arrow in 2 nd step from bromide ion
correct dipole shown on Br_{2}
correct carbocation shown

Curly arrow must start from the double bond and not a carbon atom, other curly arrow must start from $\mathrm{Br}-\mathrm{Br}$ bond
ALLOW curly arrow from any part of bromide ion The bromide ion does not need to show a lone pair Dipole must be partial charge and not full charge Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) ALLOW carbocation on carbon 1 where electrophile attacks carbon 2 i.e. ${ }^{+} \mathrm{CH}_{2} \mathrm{CBr}\left(\mathrm{CH}_{3}\right)_{2}$
6. (i)

ALLOW minor slip e.g. missing one hydrogen and left as a stick
ALLOW more than two repeat units but must be a whole number of repeat units
IGNORE brackets, use of numbers and n in the drawn structure
(ii)

7. Any two from:
separation into types and recycling OR sort plastics, melt and remould \checkmark
combustion for energy generation
used for cracking OR feedstock for plastics or chemicals
IGNORE biodegradable
used as a fuel is insufficient
releases energy is insufficient
ALLOW burning plastics to release energy
ALLOW organic feedstock / raw materials to make organic compounds

8. 1st bullet

product: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$ (1)
equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$ (1)
products: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ (1)
(or statement that 2-bromo- is formed)
equation: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$ (1)
(i.e. for one product)
products: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ and CH 3 CH 2 CH 2 CH 2 OH (1)
(or statement that $2-\mathrm{ol}$ is formed)
equation: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ (1)
(i.e. for one product)

2nd bullet

1 mark for skeleton with two repeat units (1)
1 mark for correct groups on side chains (1)

3rd bullet

two (1) (1) from
energy from incineration development of biodegradable polymers cracking of waste polymers
9. (a) (i) phosphoric acid $/ \mathrm{H}^{+} /$sulphuric acid 1
(ii) lone/electron pair of electrons acceptor
(b) (i)

Step $1 \quad$ curly arrow from π-bond to $\mathrm{H}^{+} \quad 1$
Step $2 \quad$ curly arrow from lone pair on the $\mathrm{O}^{\delta-}$ to $\mathrm{C}+\quad 1$
Step $3 \quad$ curly arrow from $\mathrm{O}-\mathrm{H}$ bond to $\mathrm{O}+\quad 1$
(ii) catalyst ... no marks because it is not consumed/used up in the reaction/owtte

$$
1
$$

10. (a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene
(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.
11. (a)

curly
dipoles shown correctly on the $\mathrm{Br}-\mathrm{Br}$ and curly arrow from the $\mathrm{Br}-\mathrm{Br}$
bond towards the Br^{δ}
correct intermediate shown
curly arrow from the lone pair or the negative charge on the Br^{-}to the
C+
$\begin{array}{ll}\text { (b) (i) } \begin{array}{l}\text { Hs are diagonal to each other in the trans/ } \\ \text { difference clearly shown in a diagram }\end{array} & 1\end{array}$
$\begin{array}{ll}\text { (ii) (the product is saturated hence) there is no restricted rotation/single } & 1 \\ \text { bonds allow rotation/because } \mathrm{C}=\mathrm{C} \text { prevents rotation }\end{array}$
12. H_{2} 1
$\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ (catalyst) $\quad 1$
13. (i) alkene 1
bromine 1
decolourises 1
(ii) 3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene 1
14. margarine

Ni catalyst 1
hydrogen/ hydrogenated 1
unsaturated vegetable oil/fat 1

poly(propene)

equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator

Problems with disposal

non-biodegradable/don't decompose/not broken down by bacteria etc
when burnt produces toxic fumes

Future methods of disposal

recycling (to produce new polymers) $\quad 1$
incineration for energy (production) 1
cracking/owtte (to produce useful organic molecules)
use gas scrubbers to reduce toxic fumes

> any two
$\max =9$
QWC
Answer is well organised/structure and using at least three of:
catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.
in the correct context.
15. (a) (i) $\mathrm{C}_{5} \mathrm{H}_{8} \quad 1$
(ii) $\mathrm{C}_{5} \mathrm{H}_{8} \quad 1$
(b) (i) Ni/Pt/Pd 1

1 mark for correct balancing $\quad 1$
(iii)

16. (i) electron/lone pair acceptor 1
(ii)

17. (i) correctly shows three repeat units with 'end bonds'
correctly identifies the repeat unit
1

(ii) harmful/toxic fumes are produced 1
(iii) recycle/remove HCl by using gas scrubbers or wtte/crack polymers/used a feedstock/ source of fuel (in an incinerator)/developing biodegradable alternatives.
18. (a) (i) $24.7 / 12: 2.1 / 1: 73.2 / 35.5$
$2.06: 2.1: 2.06 \quad 1$
CHCl 1
(ii) $(\mathrm{CHCl}=12+1+35.5=48.5 \quad 1$
$48.5 \times 3=145.5 \quad 1$
(b) (i) Any two from

2

(ii) 1, 2,3-trichloropropene
(trichloropropene scores 1 mark \checkmark)
3 marking points:

- correct numbers 1, 2,3
- trichloro
- propene/prop-1-ene
any two gets 1 mark
(c) (i)

1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made e.g used the wrong isomer.... max = 1 mark
19. (i) decolourises
(ii)

20. (a) (i) reaction $1 \quad 1$
(ii) reaction $4 \quad 1$
(iii) reaction $3 \longrightarrow 1$
(b) (i) lone pair/electron pair donor 1

Correct dipole 1
Curly arrow from the O in the OH^{-}to C in the $\mathrm{CH}_{2} \quad 1$
Curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Cl}$ bond 1
Cl^{-}as a product 1
(c) (i) same molecular formula, different structure/arrangement of atoms. (same formula, different structure.)
(ii)

(d) (i) addition, (not additional) 1
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii) 1

21. (i) decolourises/not clear/not discolours
(ii)

curly arrow from $\mathrm{C}=\mathrm{C}$ to $\mathrm{Br}^{8+} \quad 1$
dipole on $\mathrm{Br}-\mathrm{Br}$ and curly arrow showing movement of bonded
pair of electrons
correct intermediate/carbonium ion/carbocation and curly arrow
from Br^{-}to $\mathrm{C}+$
1, 2-dibromopropane as product 1
22. $\mathrm{CH}_{3} \mathrm{CBr}_{2} \mathrm{CH}_{3} 1$
$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br} \quad 1$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBr}_{2} \quad 1$
$\left(\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}\right.$ has a chiral centre, hence optical isomers of
1, 2-dibromopropane are acceptable but must be drawn with
'wedge-shape' bonds and be non-superimposable mirror images)
23. (i) unsaturated contains a double/multiple $/ \pi$ bond
hydrocarbon contains hydrogen and carbon only. $\checkmark \quad 1$
(ii) angle a $109-110^{\circ} \checkmark \quad 1$
angle b $117-120^{\circ} \checkmark 1$
(iii)

Diagram to show a minimum of 2 carbons, each with a σ-bond and p-orbitals

Overlap of adjacent p-orbitals (in words or in diagram)
24. (i) electrophile: lone pair (of electrons) acceptor.
(ii)

25. (i) Addition (not additional)

(iii)

or but-1-ene
(iv) Poly(but-1-ene) $\checkmark \quad 1$
26. (a) (i) alkene \checkmark
alcohol/hydroxy/hydroxyl \checkmark
(b) (i) $\quad \mathrm{I}=$ alkene \& II $=$ alcohol \ldots both are needed $\checkmark \quad 1$
(ii) decolourised / colourless $\checkmark \quad 1$
(iii) $\checkmark \quad 1$

(iv) \mathbf{X} as shown below \checkmark

$\begin{array}{lll}\text { (c) } & \mathrm{Ni} / \mathrm{Pt} / \mathrm{Rh} / \mathrm{Pd} \checkmark \\ \text { (ii) compound } \mathbf{B} \text { is } \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark & 1 \\ \text { (iii) } \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark & 1\end{array}$
27.

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made $\checkmark \checkmark$
28. (a) (i) Alkene/ $\mathrm{C}=\mathrm{C} \checkmark \quad 1$

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH ${ }^{-}$or hydroxide) $\checkmark \quad 1$
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same
(b) Observation decolourisation $\left({\left.\mathrm{of} \mathrm{Br}_{2}\right) \checkmark}\right.$)

Molecular formula

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{4} \checkmark \checkmark \\
& \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{2} \text { gets } 1 \text { mark }
\end{aligned}
$$

(c) reagent
$\mathrm{CH}_{3} \mathrm{COOH} \checkmark$
catalyst $\quad \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{HCl}(\mathrm{aq})$ or dilute loses the mark $\checkmark \quad 1$
(d) (i) $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark \checkmark$

1 mark for $\mathrm{H}_{2} \mathrm{O}$ and 1 mark for 2[O]
(ii) The infra-red spectrum was of compound \mathbf{Y}
because absorption between $1680-1750 \mathrm{~cm}^{-1}$ indicates a $\mathrm{C}=\mathrm{O} \checkmark \quad 1$ and the absence of a peak between $2500-3300 \mathrm{~cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid \checkmark

1

