Question			Answer	Mark	Guidance
1	(a)	(i)	M1 p-orbitals overlap (to form pi/ד-bonds) M2 m-bond(s) are delocalised in structure B M3 m-bonds are localised/between two carbons in structure A M4 AND Diagrams show correct position of delocalised and localised m-bonds/m-electrons OR correct position of p-orbital overlap QWC requires delocalised/delocalized spelled correctly and used in correct context	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE p-orbitals overlap to form sigma bonds ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or m-bonds) ALLOW π-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds/ π-electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram IGNORE charge density DO NOT ALLOW electronegativity Structures do not need to be labelled A and B if the description matches the structure

Question		Answer	Mark	Guidance
	(ii)	structure B/delocalised structure is (more) stable structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) $357\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	ALLOW structure \mathbf{B} is low in energy IGNORE structure \mathbf{B} is less reactive ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times(-) 119$ IGNORE more positive than (-) $357 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW enthalpy change is less than $3 x$ enthalpy change for cyclohexene ALLOW structure B is more stable by $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) DO NOT ALLOW more/less energy needed for the reaction Answer must refer to data given in the question and must be a comparison IGNORE $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ No marks can be awarded if structure \mathbf{A} is selected
(b)		curly arrow from lone pair on fluoride ion to positive charge on benzene ring	2	First curly arrow must come from bond not from C atom ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom ALLOW second curly arrow from negative charge on fluoride ion ALLOW second curly arrow to carbon atom with positive charge

Question		Answer	Mark	Guidance
(c)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}+\mathrm{FeBr}_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}+\mathrm{FeBr}_{4}^{-}$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW positive charge anywhere on the electrophile IGNORE AlCl_{3} OR AlBr_{3}
(d)	(i)	First reactant $=\mathrm{HNO}_{2} \checkmark$ Second reactant $=$ Third reactant $=$	3	ALLOW $\mathrm{NaNO}_{2}+\mathrm{HCl}$ OR $\mathrm{HNO}_{2}+\mathrm{HCl}$ IGNORE conditions/concentration ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=1.35(\mathrm{~g})$ award 3 marks IF answer $=0.54(\mathrm{~g})$ award 2 marks (no scale-up) IF answer $=0.216(\mathrm{~g})$ award 2 marks (incorrect scale-up) $n($ compound $D)=1.73 / 346=0.00500 \mathrm{~mol}$ $n(1,3$-diaminobenzene) required $=100 / 40 \times 0.005$ $=0.0125 \mathrm{~mol}$ Molar mass of 1,3 -diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(108)(0.0125)=1.35 \mathrm{~g}$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n (compound D) $=1.73 / 346=0.00500 \mathrm{~mol}$ Molar mass of 1,3-diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(0.00500)(108)=0.540 \mathrm{~g}$ Mass of 1,3 -diaminobenzene required $=(0.540)(100 / 40)=$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives $108 / 364 \times 1.73=0.54 \mathrm{~g}$ $0.54 / 40 \times 100=1.35 \mathrm{~g}$
(iii)	(compound D has) two chiral centres Four optical isomers exist (Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts OR use natural chiral molecules OR single isomers (as starting materials)	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres ALLOW four enantiomers OR two pairs of enantiomers INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool'/chiral auxiliary
	Total	18	

Question			Answer	Marks	Guidance
2	(a)		Nitrogen lone pair accepts a proton/ $/ \mathrm{H}^{+} \checkmark$ Requires position of lone pair on N	1	DO NOT ALLOW Nitrogen/N lone pair accepts hydrogen Proton $/ \mathrm{H}^{+}$is required ALLOW nitrogen donates a lone pair IGNORE NH_{2} group donates a lone pair
	(b)			1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW
	(c)			4	ALLOW ${ }^{+} \mathrm{NO}_{2}$ OR $\mathrm{NO}_{2}{ }^{+}$ ALLOW first curly arrow from the ring OR from within the ring to any part of the $\mathrm{NO}_{2}{ }^{+}$including the + charge DO NOT ALLOW intermediate with broken ring covering less than half the ring or incorrect orientation of broken ring + must be within the br ken ring ALLOW non-delocalized (Kekulé) structures with carbocation on either side of $\mathrm{Br} / \mathrm{NO}_{2}$ substituents DO NOT ALLOW M1 if a second arrow used on the diagram DO NOT ALLOW M3 ecf if arrow does not come from $\mathrm{C}-\mathrm{Br}$ bond If OH missing on intermediate do not award M 2 . If OH missing on final product do not award M4
	(d)	(i)	hydrochloric acid/HCl \checkmark	1	ALLOW conc / dilute HCl

Question		Answer	Marks	Guidance
	(ii)	4-amino-3,5-dibromophenol \checkmark	1	ALLOW 3,5-dibromo-4-aminophenol ALLOW 2,6-dibromo-4-hydroxyphenylamine ALLOW 2,6-dibromo-4-hydroxy(-1-)aminobenzene OR (1-)amino-2,6-dibromo-4-hydroxybenzene ALLOW absence of hyphens numbers must be clearly separated ALLOW full stops OR spaces
	(iii)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
	(iv)		1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-\mathrm{O}^{-} \mathrm{Na}^{+} \mathrm{OR}-\mathrm{O}^{-}$ DO NOT ALLOW -O-Na
(e)	(i)	dyes/dyestuffs/pigments/food colourings \checkmark	1	ALLOW indicators / biological stains DO NOT ALLOW unqualified paint or food

Question	Answer	Marks	Guidance
(ii)	reaction $1 \mathrm{HNO}_{2}$ (with or without HCl) $\mathrm{OR} \mathrm{NaNO}_{2}+\mathrm{HCl} \checkmark$ temp $<10^{\circ} \mathrm{C}$ reaction 2 CuI reaction 3 alkali(ne)	5	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous No alternative pathway possible ALLOW dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ but NOT conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ ALLOW conc HCl
	Total	16	

Question			Answer	Mark	Guidance
3	(a)	(i)	donates a lone pair (on N) OR accepts a proton/ $/ \mathrm{H}^{+} \checkmark$	1	IGNORE 'forms a dative covalent bond' (no direction of lone pair) ALLOW 'forms a dative covalent bond with/to \mathbf{H}^{+} ALLOW mark for $\mathrm{N}: \rightarrow \mathrm{H}^{+}$(can be from correct equation)
		(ii)	$\begin{aligned} & \left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)_{2} \mathrm{SO}_{4}{ }^{2-} \checkmark \\ & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+} \mathrm{CH}_{3} \mathrm{COO}^{-} \checkmark \end{aligned}$	2	ALLOW $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right)_{2} \mathrm{SO}_{4}$ DO NOT ALLOW $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right) \mathrm{HSO}_{4} \mathrm{OR}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right) \mathrm{HSO}_{4}^{-}$ brackets not required ALLOW $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}\right)\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{OR}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$ brackets not required ALLOW separate ions with or without a ' + ' sign between them, e.g. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
	(b)	(i)	 compound B	2	In diazonium ion, IGNORE Cl ${ }^{-}$ ALLOW ' + ' sign up to halfway along triple bond from left-hand N In compound B, ALLOW -OH ionised as - O^{-} ALLOW - COOH ionised as COO^{-}
		(ii)	conditions = alkaline $/ \mathrm{OH}^{-}$ AND use $=$ dye/pigment/colouring \checkmark	1	BOTH responses required for one mark ALLOW named alkali, e.g. $\mathrm{NaOH} / \mathrm{KOH}$ ALLOW base IGNORE references to temperature ALLOW use = indicator

Question		Answer	Mark	Guidance
(b)	(iii)	Organic product: Other products: CO_{2} AND $\mathrm{H}_{2} \mathrm{O} \checkmark$	2	IGNORE phenoxide: $\mathrm{O}^{-} \mathrm{OR} \mathrm{O}^{-} \mathrm{Na}^{+}$ ALLOW COO ${ }^{-}$OR COONa ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ Note: must be formulae and not names (in question)
(c)			1	ALLOW $\mathrm{N}_{2}{ }^{+}$on structural formula ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{H}^{+}$ ALLOW $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{N}_{2}+\mathrm{HCl}$ If + charge shown, IGNORE its position
		Total	9	

Question			Expected Answers	Marks	Additional Guidance
4	a			1	ALLOW * in place of circle ALLOW if circle extends to include OH
		ii	Mark 1 - production of a single isomer is more expensive/difficult OR separation of the single isomer is expensive/difficult \checkmark Mark 2 - one of the isomers is more (pharmacologically) active or one of the isomers might have adverse/harmful/nasty side effects \checkmark Marks 3 and 4 - problems are overcome by using: Enzymes/bacteria/biological catalyst Chiral synthesis Chiral catalyst or transition metal complex Start with a natural chiral molecule or chiral pool any	4	IGNORE any reference to dosage ALLOW one is more effective/works (better) DO NOT ALLOW use naturally occurring isomer unless stated that it is a chiral compound DO NOT ALLOW transition metal ion DO NOT ALLOW pool synthesis Chiral pool synthesis scores 1 (not 2) marks
	b	i		1	 ALLOW epoxy ethane as $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O},\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$, $\mathrm{CH}_{2} \mathrm{OCH}_{2}$ ALLOW product as $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ DO NOT ALLOW product as $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}$
		ii	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$	1	ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ ALLOW displayed/skeletal formula DO NOT ALLOW molecular formula

Question		Expected Answers	Marks	Additional Guidance
c	i	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+} \mathrm{Cl}^{-}$ Must show Cl^{-}ion	1	ALLOW $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{3} \mathrm{Cl}$ if formula is correct and both charges not shown ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ / any correct unambiguous structure DO NOT ALLOW ions joined by covalent bonds
	ii	$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}{ }^{+} \mathrm{HS}^{-}$ Must show HS^{-}ion	1	ALLOW if formula is correct and both charges not shown ALLOW $\left(\mathrm{CH}_{2}\right)_{2}$ any correct unambiguous structure ALLOW $\left(\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{3}^{+}\right)_{2} \mathrm{~S}^{2-}$
d	i	Both NH_{2} and COOH are joined to the same $\mathrm{C} \downarrow$	1	 The 4 groups/atoms attached to the C can be in any order but CH must be adjacent. () not essential
	ii		1	$\text { ALLOW }\left(\mathrm{CH}_{2}\right)_{2}$ DO NOT ALLOW molecular formula
e	i	Question 5e is followed by two blank lined pages (15 and 16) which ca Please check to see whether or not pages 15 or 16 have been used	didate	can use instead of requesting additional paper.

Question		Expected Answers		Marks	Additional Guidance
e	i	 Isomer G * not required		2	ALLOW HO(CH2 $)_{4} \mathrm{NH}_{2} /$ ALLOW any correct unambiguous structure of 1-aminobutan-4-ol ALLOW CH3 $\mathrm{CH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{3}$ ALLOW any correct unambiguous structure of 2-aminobutan-3-0
			Total	13	

