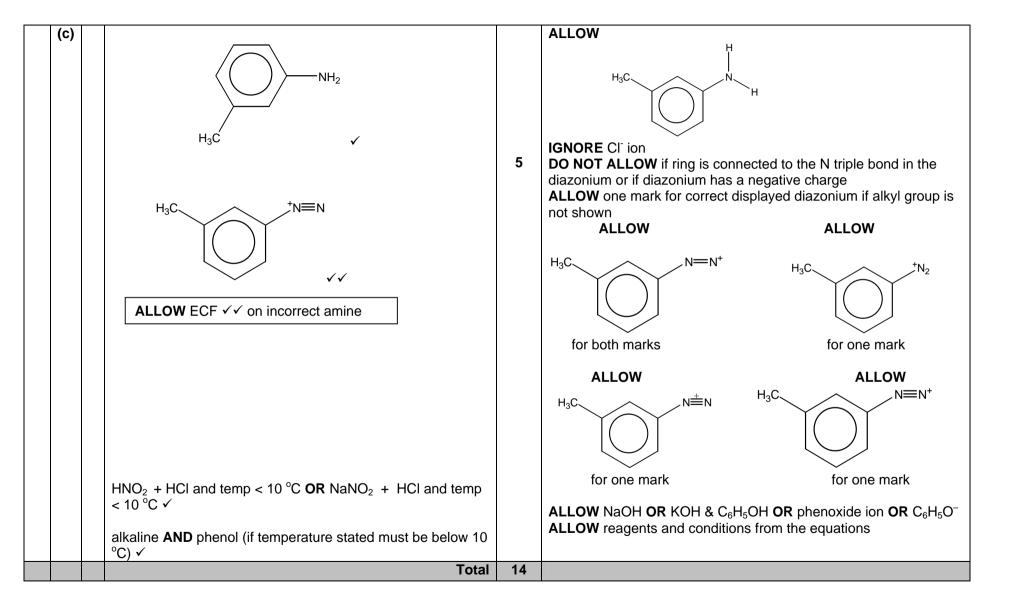
(Question		er	Mark	Guidance
1	(a)	(i)	Response requires three stages		Acceptable sequence of stages are:
	, ,		chlorination		nitration, reduction, chlorination
			 nitration 		 nitration, chlorination, reduction,
			reduction		chlorination, nitration, reduction
			Reduction must be a later stage than nitration		, , ,
					For organic products,
			Mark according to which sequence chosen.		ALLOW C ₆ H ₅ NO ₂ OR C ₆ H ₅ CI OR C ₆ H ₅ NH ₂
					ALLOW NO ₂ - AND NH ₂ -
			Stage 1		DO NOT ALLOW CIC ₆ H ₄ NO ₂ (formula ambiguous)
			organic product:		DO NOT ALLOW molecular formulae
					IGNORE any additional structures shown
					eg 2- (ortho) and 3- (meta) substituted isomers
			$ CI \longrightarrow \langle () \rangle$ OR $\langle () \rangle \longrightarrow NO_2$		
					In chemicals boxes,
					IGNORE temperatures
			chemicals:		IGNORE 'catalyst'
			Cl ₂ AND AICl ₃ OR HNO ₃ AND H ₂ SO ₄		
			✓		For chlorination chemicals,
					ALLOW Cl ₂ AND FeCl ₃
					OR Cl ₂ AND Fe
			Stage 2		OR Cl ₂ AND halogen carrier
			organic product:		
					For nitration chemicals,
					'concentrated' not required for HNO ₃ OR H ₂ SO ₄
			$ CI \longrightarrow \langle () \rangle \longrightarrow NO_2 OR \langle () \rangle \longrightarrow NH_2 $		BUT DO NOT ALLOW 'dilute'
			\		For reduction chemicals,
					'concentrated' HCl not required but DO NOT ALLOW 'dilute'
			chemicals:		
			HNO ₃ AND H ₂ SO ₄ OR Sn AND HCI ✓		For Sn/HCl ALLOW addition of NaOH also IF it is clear that it is a
			Ctorro 2		second step
			Stage 3	5	BUT DO NOT ALLOW Sn AND HCI AND NaOH
			chemicals:	J	ICNORE actal at
1			Cl ₂ AND AlCl ₃		IGNORE catalyst

Question	er	Mark	Guidance
(a) (i	diazonium ion CI N≡N N=N group MUST be displayed azo dye	Wark	ALLOW '+' sign up to halfway along triple bond from left-hand N IGNORE presence of Cl ⁻ DO NOT ALLOW Cl ⁻ substituent on benzene ring DO NOT ALLOW: Cl N ₂ ⁺
	CI—NN—OH NN—N=N− group MUST be displayed	2	In azo dye, ALLOW as alternative to phenol OH group: O^ OR O^Na^ OR ONa ALLOW phenol part substituted at any carbon (ie 2,3 or 4 position for –OH) i.e. HO OH IGNORE geometry/shape, i.e. ALLOW —N=N— Mark independently DO NOT ALLOW if CI— is missing from benzene ring in EITHER structure

Question	er	Mark	Guidance
(b)	mark 2 $\frac{\delta}{\delta}$ step 1 $\frac{\delta}{\delta}$ mark 4 $\frac{\delta}{\delta}$ intermediate = mark 3	4	mark 1 – curly arrow from π-delocalised ring in benzene to S ^{δ+} in SO ₃ ✓ ALLOW curly arrow from the ring OR from within the ring mark 2 – curly arrow from one S=O double bond to the O (to produce a S=O ⁻) ✓ ALLOW curly arrow to any O in SO ₃ mark 3 – intermediate showing delocalisation over 5 carbons ✓ Intermediate must have correct SO ₃ – structure FULLY displayed DO NOT ALLOW intermediate with broken ring less than halfway up in correct orientation: mark 4 – curly arrow from C-H bond reforming π- delocalised ring in benzene ✓ Stand alone mark IGNORE responses after STEP 2

Qu	Question		er	Mark	Guidance
					ALLOW Kekulé mechanism mark 2
((c)	(i)	Various possibilities, eg: Br OH H3C OH Br		ALLOW 1, 2, 3 or 4 Br atoms substituted on phenol ring at carbon atoms 2, 3, 5 or 6 BUT –OH must be in correct position shown DO NOT ALLOW OT or ONa ALLOW for side chain: CH ₃ CONH but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect
		-	Reaction with Na O H ₃ C — C — N H	2	ALLOW ONa OR O ⁻ as alternative to O ⁻ Na ⁺ DO NOT ALLOW O-Na OR O ⁻ Na (i.e. Na without charge) -ONa must be in correct position shown ALLOW for side chain: CH ₃ CONH but aromatic part of structure must be shown IGNORE any additional inorganic products in boxes (even if incorrect)


Question	er	Mark	Guidance
(c) (ii)	Hydrolysis with NaOH(aq) O H ₃ CCO ⁻ Na ⁺		On BOTH structures, ALLOW ONa OR O ⁻ as alternative to O ⁻ Na ⁺ DO NOT ALLOW O–Na OR O ⁻ Na (i.e. Na without charge) -ONa must be in correct position shown on 2nd structure ALLOW CH ₃ COONa/ CH ₃ CO ₂ Na OR CH ₃ COO ⁻ / CH ₃ CO ₂ ⁻
	H ₂ N—O ⁻ Na ⁺ Mark independently	2	ALLOW one mark for carboxylic acid AND phenol, rather than sodium salts: OH2N-OH H ₃ C-C-OH ALLOW NH ₂ -, CH ₃ - IGNORE any additional inorganic products in boxes (even if incorrect)
	Total	15	

Question	Expected Answers	Marks	Additional Guidance
2 a	Bond length intermediate between/different from (short) C=C and (long) C−C ✓ ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) ✓ Only reacts with Br₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack ✓ Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
b i	compound A NO₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) Compound B NH₂ compound C NNH₂ ✓	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW ALLOW NO2 CH ₃ drawn in any orientation ALLOW any 4-amino-1,3-dimethylbenzene drawn in any orientation ECF amine of incorrect compound A (e.g. position of NO ₂ or lack of methyl sticks/groups) ALLOW diazonium chloride salt of 1,3-dimethylbenzene ECF diazonium salt/compound of incorrect compound B IGNORE Cl ⁻ ion allow N=N ⁺ not allow N=N ⁺ N2

Q	uesti	on	Expected Answers	Marks	Additional Guidance
					ALLOW if + charge is floating between the two Ns only if it is closer to the correct N allow N N N N N N N N N N N N N
			compound D		
			HO		ALLOW any of OH
					OH O'
					ALLOW O ⁻ in place of OH

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> HNO ₃ + 2H ₂ SO ₄ → H ₃ O ⁺ + 2HSO ₄ ⁻ + NO ₂ ⁺ ✓		Equation to show formation of NO_2^+ ion \checkmark ALLOW HNO ₃ + H ₂ SO ₄ \rightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ HNO ₃ + H ₂ SO ₄ \rightarrow HSO ₄ ⁻ + H ₂ NO ₃ ⁺ \rightarrow H ₂ O + NO ₂ ⁺
If NO ₂ is in correct position	mark 4 – curly arrow from C–H bond back to reform π ring AND correct products \checkmark	5	ALLOW mark 2 curly arrow must be from 1,3-dimethylbenzene to NO ₂ ⁺ and ECF for marks 3 and 4
do not penalise even if	$\frac{1}{100}$		DO NOT ALLOW intermediate
compound A in b(i) is not in correct position	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		π -ring must be more than $1/2$ $+$ $+$ way up
	mark 2 − curly arrow from intermediate with π ring to $^{+}NO_{2}$ ✓ ring broken in the correct place ✓ in part (i) − cannot score full marks [in b(i) & b(ii)] if NO_{2} is not adjacent to a methyl		ALLOW CH ₃ s shown
			ALLOW $H_3O^+ + HSO_4^- \rightarrow H_2O + H_2SO_4$
iii	2 ✓	1	No other correct response
	Total	13	

C	uest	ion	Expected Answers	Marks	Additional Guidance
3	(a)		$+$ Br ₂ \longrightarrow Br $+$ HBr	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+
	(b)	(i)	White precipitate OR white solid OR white crystals ✓	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures
		(iii)	MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks benzene electrons or π-bonds are delocalised ✓ phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring ✓ cyclohexene electrons are localised OR delocalised between two carbons ✓ benzene has a lower electron density OR phenol has a higher electron density ✓ Cyclohexene has a higher electron density ✓ benzene cannot polarise or induce a dipole in Br₂ OR	5	ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol
			phenol can polarise the Br_2 OR cyclohexene can polarise Br_2 or the Br – Br bond \checkmark		electron density ALLOW Br ⁸⁺ OR electrophile Br ⁺ as alternate to polarise

