F324: Rings, Polymers & Analysis 4.2.1 – Amino Acids & Chirality MARK SCHEME

1. (i)

(ii) must attempt 3D

use <u>RE</u> symbol in the "tools" to denote whether or not each chiral C is a reflection of the one given in the question

each chiral C must have 2 — bonds, 1 wedge bond (**IGNORE** shading) & 1 dash bond (**IGNORE** wedge) check the clockwise orientation of each C. For each C start with the H and if on the:

- top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE.
- bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE.

the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. **MUST** check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. **IGNORE** bond linkage for all groups

[4]

3

1

3. valine–glycine–leucine \checkmark

ALLOW val-gly-leu DO NOT ALLOW structures

4.	(i)	one amide link shown correctly (1) glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)	3	
	(ii)	6 (1)	1	
	(iii)	gas/liquid chromatograph separates the tripeptides (1) mass spectrometer produces a distinctive fragmentation pattern (1) identification by computer using a spectral database (1)	3	[7]

[1]

5. General formula of an α -amino acid

Diagram to show length of polypeptide / repeat unit – eg

with:

displayed peptide bond (1)

correct structure with a minimum of two amino acids joined (can be scored by a dipeptide) (1)

idea of polymerisation shown by 'end bonds' (1)

loss of water (1)

relate variety to different R groups / sequence of amino acids (1) AW 7 Quality of written communication:

correct organisation and use of **both** of the terms: <u>condensation polymer</u>(isation) and <u>peptide bond/link</u> (1)

6.

(1) for CONH and (1) for rest. Accept reverse order.

[2]

[8]

1

2

1

2

7.

(a)

(i)

is an amine and a carboxylic acid / contains both NH2 and COOH functional groups (1) AW

(ii) RCH(NH₂)COOH (1)

Does not fit the formula because NH_2 and COOH are not attached to the same carbon (1) AW

(ii) -COO⁻ becomes -COOH (1)
(rest of structure unaffected)
(allow ecf on rest of the structure)

1

1

2

2

1

1

[7]

[2]

displayed peptide bond (1) rest of the structure also correct (1) (allow full marks for a correct anhydride structure)

8.

=0 =O and

at least one correct skeletal formula (1) correct *cis* and *trans* isomers of but-2-enal (1)

9.

(a)

(i) RCH(NH₂)COOH (1) *allow groups R, CH, NH₂, COOH in any order*₂

(ii) any unambiguous structure, e.g.: H H H H - C - C - C - H H - C - H

	(b)	(i)	molecule/ion/'it' has both + and – charges	1	
		(ii)	description or diagram to show proton/H ⁺ transfer from COOH to NH ₂ (1) H + I O H - N - C - C H H O (1) NOT just 'hydrogen' transfer	2	
	(c)	(i)	heat/warm/reflux (1)		
			named strong acid/base an enzyme (which need not be named) (1) NOT conc HNO ₃ or conc H ₂ SO ₄	2	
		(ii)	hydrolysis (1)	1	[8]
10.	(i)	о С НО	Н ОН О – С–С*–С′ – С–С*–С′ – Н Н ОН(1)	1	
	(ii)		ture with correct use of at least two 3-D bonds (1) – e.g. CH_2COOH CH_2COOH HO	1	[2]
11.	(a)		ne / C=C double bond nary) alcohol / hydroxy(l) (1)	1	
	(b)	(i)	molecules with the same structure / order of bonds but different arrangements in space / 3-D arrangment (1)	1	
		(ii)	cis-trans / geometric (1)	1	
		(iii)	the double bond does not rotate (1)	1	

(iv) same groups at one end / need different groups at both ends of the C=C (1) AW

12. (a) (i)
$$H_2NCHRCOOH / H_2N - c - cooh (1)$$

allow R CH NH₂ and COOH in any order

(ii) they both have the $H_2N - \dot{c} - COOH$ group / or in words (1) H NOT just "they both have NH_2 and COOH"

R group is H in glycine and CH_2CH_2COOH in glutamic acid (1) 2

(b)

5

[5]

1

1

glutamic acid/molecule with optical isomers ... (c) ... is chiral (1) ... has four different / distinguishable groups attached to a carbon (1) NOT just "different atoms" ... the mirror images/isomers cannot be superimposed AW (1) one diagram showing two 3-D bonds not opposite each other, and not with angles looking like 90° (1) 3-D diagram of the other isomer (allow ecf on one 3-D error) (1) all groups correctly connected for glutamic acid in both diagrams (1) glycine only has three different groups / two groups are the same / 8 3-D diagram used to show symmetry (1) quality of written communication

for correct use and organisation of at least **one** technical term: *(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric (1)

(b)	C=C double bond does not rotate (1)	
	two different groups on each carbon (of the C=C) AW (1)	2
	NOT on "each side" of the $C=C$	

- i. trans because H / groups are on opposite sides AW (1)
- ii. any formula that shows the H on the same side eg

[5]

[16]

14. (i) water / evidence of a solution in water – eg (aq), 'dil', '6M' or ' conc' for HCl (1) *NOT conc HNO*₃ *or conc H*₂SO₄

a named strong acid or alkali (heated under) reflux / a suitable enzyme at around 37°C (1)

1

1

1

(ii) amino acids (1)

(iii)

- correct structure for one of the amino acids (1) correct ionic form for reagent used in a(i) - eg H = 0H = 0
- (iv)reaction with water to split/break down the compound (1)peptide bond in the compound is broken / diagram to show AW (1)2
- **15.** (i) eg fire resistant / bullet proof clothing / cycle tyres / tennis rackets (1) *allow any use where a tough flexible material is needed*
 - (ii) <u>condensation</u> (polymerisation) (1)

structure of benzene-1,4-dicarboxylic acid (1) amide /peptide bond displayed (1) repeat unit of correct polymer indicated (1) formula of water shown as the product in an equation (1)

[6]

[7]

1

1

5