F324: Rings, Polymers \& Analysis 4.2.1 - Amino Acids \& Chirality MARK SCHEME

1. (i)

ALLOW $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ any order for $\mathrm{R}, \mathrm{NH}_{2}$ and COOH
but C must be next to H ' $\underline{C H}$ ' must be shown
ALLOW CO ${ }_{2} \mathrm{H}$
brackets around NH_{2} are not essential
ALLOW structure
(ii) must attempt 3D
use $R E$ symbol in the "tools" to denote whether or not each chiral C is a reflection of the one given in the question

both chiral Cs are mirror images

top chiral C only is a mirror image

bottom chiral C only
is a mirror image
each chiral C must have 2 - bonds, 1 wedge bond (IGNORE shading) \& 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the:

- top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE.
- bottom C the H is followed by CH_{3} it is not a mirror image. If it is a mirror image annotate using $R E$.
the four groups can be attached in any order. If the molecule is drawn upside down - clockwise becomes anti-clockwise.
MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn.
IGNORE bond linkage for all groups

2.

alanine at $\mathrm{pH}=6.0$
glutamic acid at $\mathrm{pH}=10$

lysine at $\mathrm{pH}=2.0$
ALLOW $\mathrm{CO}_{2}{ }^{-}$
ALLOW $\mathrm{NH}_{3}{ }^{+}$
If NH_{3} fully displayed $\boldsymbol{A L L O W}+$ charge on N or H If COO fully displayed ALLOW - charge on O only
3. valine-glycine-leucine

ALLOW val-gly-leu
DO NOT ALLOW structures
4. (i) one amide link shown correctly (1)
glycine and phenylalanine parts shown correctly (1) proline linked correctly (1)
(ii) $6(1) \quad 1$
(iii) gas/liquid chromatograph separates the tripeptides (1)
mass spectrometer produces a distinctive fragmentation pattern (1)
identification by computer using a spectral database (1)
5. General formula of an α-amino acid
$\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH} /$

Diagram to show length of polypeptide / repeat unit - eg

with:
displayed peptide bond (1)
correct structure with a minimum of two amino acids joined
(can be scored by a dipeptide) (1)
idea of polymerisation shown by 'end bonds’ (1)
loss of water (1)
relate variety to different R groups / sequence of amino acids
(1) AW

Quality of written communication:
correct organisation and use of both of the terms:
condensation polymer(isation) and peptide bond/link (1)
6.

(1) for CONH and (1) for rest. Accept reverse order.
7. (a) (i) is an amine and a carboxylic acid / contains both NH 2 and COOH functional groups (1) AW
(ii) $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}(1)$

Does not fit the formula because NH_{2} and COOH are not attached to the same carbon (1) AW
(b) (i)

(1)
(ii) $\quad-\mathrm{COO}^{-}$becomes -COOH (1)
(rest of structure unaffected)
(allow ecf on rest of the structure)
(c)

displayed peptide bond (1)
rest of the structure also correct (1)
(allow full marks for a correct anhydride structure)
2
8.

at least one correct skeletal formula (1)
correct cis and trans isomers of but-2-enal (1)
9. (a) (i) $\mathrm{RCH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}$ (1)
allow groups $\mathrm{R}, \mathrm{CH}, \mathrm{NH}_{2}, \mathrm{COOH}$ in any order ${ }_{2}$
(ii) any unambiguous structure, e.g.:

(b) (i) molecule/ion/'it' has both + and - charges
(ii) description or diagram to show proton $/ \mathrm{H}^{+}$transfer from COOH to NH_{2} (1)

(1)

NOT just 'hydrogen' transfer
(c) (i) heat/warm/reflux (1)
named strong acid/base
an enzyme (which need not be named) (1)
NOT conc HNO_{3} or conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) hydrolysis (1) 1
10. (i)

(ii) structure with correct use of at least two 3-D bonds (1) - e.g.

allow ecf if lactic acid is labelled in (i)
NOT if all four bond angles at 90°
11. (a) alkene / $\mathrm{C}=\mathrm{C}$ double bond (primary) alcohol / hydroxy(1) (1)
(b) (i) molecules with the same structure / order of bonds ... but different arrangements in space / 3-D arrangment (1)
(ii) cis-trans / geometric (1)
(iii) the double bond does not rotate (1)
(iv) same groups at one end / need different groups at both ends of the $\mathrm{C}=\mathrm{C}$ (1) AW
12. (a)
(i) $\begin{gathered}\stackrel{\mathrm{R}}{1} \\ \mathrm{H}_{2} \mathrm{NCHRCOOH} / \mathrm{H}_{2} \mathrm{~N}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{COOH}(\mathbf{1}) \\ \mathrm{H}\end{gathered}$ allow $\mathrm{R} \mathrm{CH} \mathrm{NH}_{2}$ and COOH in any order
(ii) they both have the $\mathrm{H}_{2} \mathrm{~N}-\stackrel{\text { Con }}{\substack{\vdots \\ \hline}}-\mathrm{COOH}$ group / or in words (1) NOT just "they both have NH_{2} and COOH "

R group is H in glycine and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ in glutamic acid (1)
(b)

	$-\mathrm{NH}_{3}{ }^{+}(\mathbf{1})$ -COOH and side chain unaffected (1)		one $-\mathrm{COO}^{-}(1)$ both $-\mathrm{COO}^{-}$(1) $\mathrm{H}_{2} \mathrm{~N}$ - and rest of molecule (1)

(c) glutamic acid/molecule with optical isomers ...
... is chiral (1)
... has four different / distinguishable groups attached to a carbon (1)
NOT just "different atoms"
... the mirror images/isomers cannot be superimposed AW (1)
one diagram showing two 3-D bonds not opposite each other, and not with angles looking like 90°

3-D diagram of the other isomer (allow ecf on one 3-D error) (1)
all groups correctly connected for glutamic acid in both diagrams (1)
glycine
only has three different groups / two groups are the same /
3-D diagram used to show symmetry (1)
quality of written communication
for correct use and organisation of at least one technical term:
*(in the correct place), non-superimposable, enantiomer, stereoisomer(ism), tetrahedral, assymetric (1)
13. (a)

(1)
(b) $\mathrm{C}=\mathrm{C}$ double bond does not rotate (1)
two different groups on each carbon (of the $\mathrm{C}=\mathrm{C}$) $\mathbf{A W}$ (1)
NOT on "each side" of the $C=C$
i. trans because H / groups are on opposite sides AW (1)
ii. any formula that shows the H on the same side -eg

14. (i) water / evidence of a solution in water - eg
(aq), 'dil' ,'6M' or ' conc' for HCl (1)
NOT conc HNO_{3}
or conc $\mathrm{H}_{2} \mathrm{SO}_{4}$
a named strong acid or alkali (heated under) reflux / a suitable enzyme at around $37^{\circ} \mathrm{C}$ (1)
(ii) amino acids (1)
(iii) correct structure for one of the amino acids (1) correct ionic form for reagent used in a(i) - eg

(1)
(iv) reaction with water to split/break down the compound (1)
peptide bond in the compound is broken / diagram to show AW (1)
15. (i) eg fire resistant / bullet proof clothing / cycle tyres / tennis rackets (1) allow any use where a tough flexible material is needed
(ii) condensation (polymerisation) (1)

structure of benzene-1,4-dicarboxylic acid (1)
amide /peptide bond displayed (1)
repeat unit of correct polymer indicated (1)
formula of water shown as the product in an equation (1)

