


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | (a) | (i) | molecular ion is 58 OR m/z is $58 \checkmark$ $(58-(36+6)=16) \text { so } x=1 \downarrow$ |  | ALLOW peak on the right is 58 OR parent ion is 58 ALLOW 58 shown on the spectrum eg the peak is labelled with a number OR there is a ring around the peak <br> The $M_{\mathrm{r}}$ OR molecular mass is 58 with no evidence is not sufficient <br> ALLOW $x=1$ <br> ALLOW $\mathbf{Z}$ is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ |
|  |  | (ii) | $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO} \mathrm{OR} \mathrm{CH} \mathrm{COCH}_{3} \checkmark$ | 1 | ALLOW displayed or skeletal formulae ALLOW combination of types of formulae as long as it is unambiguous <br> ALLOW other correct structures, eg enols, ethers and cyclic structures eg $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{OH}$ OR CH $\mathrm{CH}_{2}=\mathrm{CHOCH}_{3}$ OR structure of cyclopropanol <br> DO NOT ALLOW a structure showing H with 2 bonds, ie $\mathrm{OH}-\mathrm{C}$ |
|  |  | (iii) | $\mathrm{C}_{2} \mathrm{H}_{5}^{+} \checkmark$ | 1 | ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+}$OR $\mathrm{COH}^{+}$OR HCO ${ }^{+}$ The positive sign must be included |
|  | (b) |  | $m / z$ values/peaks around 56 | 1 | ALLOW peaks around 56 OR peak at 56 <br> OR peaks around 55.8 <br> DO NOT ALLOW peak at 55.8 <br> DO NOT ALLOW peaks show the iron isotopes |
|  | (c) | (i) | The number of $m / z$ values (around 32) $\checkmark$ | 1 | ALLOW the number of peaks IGNORE any reference to molecular ion peak |
|  |  | (ii) | Different isotopic abundance $\checkmark$ | 1 | ALLOW different percentage of each isotope OR different isotopes present ALLOW sulfur atoms have different number of neutrons OR different mass numbers |


| Question | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: |
| (d) | No absorption between 1640 and $1750 \mathrm{~cm}^{-1}$ AND <br> no (broad) absorption between 3200 <br> and $3550 \mathrm{~cm}^{-1} \checkmark$ | 1 | ALLOW the only significant absorption is at around 2850 to 3100 $\mathrm{cm}^{-1}$ due to $\mathrm{C}-\mathrm{H}$ bond OR <br> There is an absorption around 2850 to $3100 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{H}$ bond AND no absorptions by $\mathrm{C}=\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ bonds <br> IGNORE comments about $\mathrm{C}-\mathrm{O}$ <br> ALLOW any values within the wavenumber range |
| (e) | $\mathrm{C}=\mathrm{O}$ because of absorption between 1640 <br> and $1750 \mathrm{~cm}^{-1}$ <br> AND <br> $\mathrm{O}-\mathrm{H}$ (broad) absorption between 2500 to $3300 \mathrm{~cm}^{-1}$ <br> Carboxyl group OR carboxylic acid $\checkmark$ | 2 | ALLOW any values within the wavenumber range ALLOW O-H (broad) absorption between 2500 to $3500 \mathrm{~cm}^{-1}$ (from spectrum) <br> IGNORE C-O <br> ALLOW carboxylic acid if linked with O-H absorption IGNORE alcohol, ester, aldehyde, ketone or amide |
|  | Total | 10 |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | (a) |  | B $\checkmark$ | 1 | ALLOW $\mathrm{CF}_{2} \mathrm{CF}_{2}$ OR $\mathrm{C}_{2} \mathrm{~F}_{4}$ OR tetrafluoroethene |
|  | (b) | (i) |  | 1 | ALLOW correct structural OR displayed OR skeletal OR mixture of the above <br> ALLOW E isomer |
|  |  | (ii) | $\mathrm{HCl} \checkmark$ | 1 | DO NOT ALLOW Cl ${ }_{2}$ <br> IGNORE names IGNORE nitrogen oxides / $\mathrm{NO}_{\mathrm{x}}$ |
|  | (c) | (i) | ANY TWO FROM THE FOLLOWING <br> Low reactivity OR will not burn/non-flammable <br> Volatile OR low boiling point <br> non-poisonous OR non-toxic | 1 | ALLOW inert OR stable DO NOT ALLOW inflammable <br> ALLOW it is a gas IGNORE easily compressed <br> IGNORE not harmful <br> IGNORE references to solubility |



| Question |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| (iii) |  | D $\checkmark$ | 1 | ALLOW $\mathrm{CHF}_{2} \mathrm{Cl}$ ALLOW B OR C $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{OR} \mathrm{CF}_{2} \mathrm{CF}_{2}$ |
| (d) | (i) | bond vibrates (more) OR bond bends (more) OR bond stretches (more) $\checkmark$ | 1 | BOND essential <br> IGNORE molecule vibrates/rotates Assume "It" refers to the molecule and is insufficient DO NOT ALLOW any reference to bond breaking <br> DO NOT ALLOW a stated bond if not present in $\mathbf{C}$ and $\mathbf{F}$ e.g. $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{H}$ not prese |
| (ii) |  | $\begin{aligned} & \mathrm{Cl}_{3} \mathrm{C}^{+} \checkmark \\ & \mathrm{CF}_{2} \mathrm{Cl} l^{+} \checkmark \end{aligned}$ | 2 | ALLOW 1 mark for $\mathrm{Cl}_{3} \mathrm{C}$ AND $\mathrm{CF}_{2} \mathrm{Cl}$ i.e. no + charge used <br> ALLOW 1 mark for $\mathrm{Cl}_{3} \mathrm{C}^{-}$AND $\mathrm{CF}_{2} \mathrm{C}\lceil$ i.e. - charge used on both |
|  |  | Total | 13 |  |


| Question |  |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | (a) | (i) | FIRST, CHECK THE ANSWER ON ANSWER LINE <br> IF $\Delta H_{c}=-2260\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks <br> IF $\Delta \boldsymbol{H}_{\mathrm{c}}=(+) 2260\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) <br> IF $\Delta \boldsymbol{H}_{\mathrm{c}}=( \pm) 2257(.2)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks (not 3 sf ) <br> Moles <br> Amount, $n, \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ calculated correctly $=0.0175(\mathrm{~mol})$ <br> Energy <br> $q$ calculated correctly $=39501$ (J) OR 39.5(01) (kJ) $\checkmark$ <br> Calculating $\Delta H$ <br> correctly calculates $\Delta \mathrm{H}^{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs $\checkmark$ <br> Rounding and Sign <br> calculated value of $\Delta \mathrm{H}$ rounded to 3 sig. fig. with minus sign $\checkmark$ | 4 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> Note: $q=180 \times 4.18 \times 52.5$ <br> ALLOW 39501 OR correctly rounded to 3 sig. fig. (J) <br> IGNORE sign <br> IGNORE working <br> Note: from 39501 J and $0.0175 \mathrm{~mol}_{\mathrm{H}} \mathrm{H}=(-) 2257.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ <br> IGNORE sign at this intermediate stage <br> ALLOW ECF from incorrect q and/or incorrect n <br> Final answer must have correct sign and three sig figs |
|  |  | (ii) | ANY TWO FROM THE FOLLOWING <br> incomplete combustion <br> non-standard conditions <br> evaporation of alcohol/water <br> specific heat capacity of beaker/apparatus | 2 | IGNORE heat loss (in question) <br> ALLOW burns incompletely IGNORE incomplete reaction |


| Question |  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: | :---: |
| (b) | (i) | $5 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}{ }_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{I}) \checkmark$ | 1 | Balancing numbers AND species AND states all required DO NOT ALLOW multiples of this equation |
|  | (ii) | FIRST, CHECK THE ANSWER ON ANSWER LINE <br> IF enthalpy change $=\mathbf{- 3 3 2 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks <br> IF enthalpy change $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks <br> Working for $\mathrm{CO}_{2}$ AND $\mathrm{H}_{2} \mathrm{O}$ seen anywhere $\begin{aligned} & 5 \times(-) 394 \text { AND } 6 \times(-) 286 \\ & \text { OR (-) } 1970 \text { AND } \\ & \text { OR (-)3686 } \checkmark \quad(-) 1716 \end{aligned}$ <br> Calculates $\Delta H_{c}$ <br> A further 2 marks for correct answer AND correct sign $\begin{aligned} & =5 \times-394+6 \times-286--366 \\ & =-3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \vee \checkmark \end{aligned}$ <br> A further 1 mark for correct answer AND incorrect or no sign $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$ <br> Cycle wrong way around: $-366-(5 \times-394+6 \times-286)$ | 3 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> IF there is an alternative answer, check to see if there is any ECF credit possible <br> Common incorrect answers are shown below Award 2 marks for $-1744 \text { OR -1890 OR -314 OR -4052 }$ <br> Award 1 mark for <br> 1744 OR 1890 OR 314 OR 4052 |


|  | Answer | Mark | Guidance |
| :---: | :---: | :---: | :---: |
| (c) | QWC: Evidence of the IR absorption at $1720\left(\mathrm{~cm}^{-1}\right)$ for presence of $\mathrm{C}=\mathrm{O} /$ carbonyl group <br> QWC: No carboxylic acid OH absorption in IR OR no peak between $2500-3300 \mathrm{~cm}^{-1}$ <br> AND <br> so $\mathbf{J}$ is a secondary alcohol $\mathbf{O R}$ so K is a ketone $\checkmark$ <br> Alcohol J <br> Compound K <br> Structure of a carbonyl compound that could be obtained from alcohol J $\checkmark$ <br> Equation <br> Balanced equation for conversion of $\mathbf{J}$ to $\mathbf{K} \checkmark$ <br> e. <br> $\mathrm{CH}_{3} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)_{2}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$ | 6 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> LOOK ON THE SPECTRUM for labelled peaks which can be given credit <br> BOTH IR at $\sim 1720\left(\mathrm{~cm}^{-1}\right)$ AND C=O required <br> ALLOW ranges from Data Sheet, <br> i.e. $\mathrm{C}=\mathrm{O}$ within range $1640-1750 \mathrm{~cm}^{-1}$; <br> IGNORE any reference to C-O absorption <br> For structures of $\mathbf{J}$ and $\mathbf{K}$, <br> ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above <br> IGNORE any names given for $\mathbf{J}$ and $\mathbf{K}$ <br> ALLOW 1 mark for the structure of an alcohol with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ <br> DO NOT ALLOW pentan-1-ol (primary and unbranched) or 2-methylbutan-2-ol (branched but tertiary) <br> DO NOT ALLOW any marks for $\mathbf{J}$ and $\mathbf{K}$ if more than one structure is given for $\mathbf{J}$ <br> Note: ‘sticks' in either J and/or K will lose only 1 mark <br> IF a structure is not given for $\mathbf{J}$ <br> NOTE: structures for $\mathbf{J}$ and $\mathbf{K}$ could be awarded from the equation, even if not labelled. <br> ALLOW molecular formulae in equation i.e. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ <br> DO NOT ALLOW equations that form a carboxylic acid |


| Question |  | Answer | Mark | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| (d) |  | Labelled diagram showing at least one H-bond between <br> alcohol molecule and water $\checkmark$ <br> e. | IF diagram is not labelled ALLOW Hydrogen bonds / H <br> bonds from text |  |
| Diagram should include role of an O lone pair and dipole |  |  |  |  |
| charges on each end of H bond. |  |  |  |  |
| IGNORE alcohol R group, even if wrong |  |  |  |  |


| Question |  |  | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (a) |  | 1-bromopentane reacts faster OR 1-chloropentane reacts slower <br> $\mathrm{C}-\mathrm{Cl}$ stronger bond (than $\mathrm{C}-\mathrm{Br}$ bond) <br> OR C-Cl shorter bond (than $\mathrm{C}-\mathrm{Br}$ bond) OR $\mathrm{C}-\mathrm{Cl}$ bond is harder to break OR needs more energy to break $\mathrm{C}-\mathrm{Cl}$ bond OR bond enthalpy of $\mathrm{C}-\mathrm{Cl}$ greater (than $\mathrm{C}-\mathrm{Br}$ bond) $\checkmark$ | 2 | ALLOW takes more time to react ALLOW chloro compound reacts slower than bromine compound <br> DO NOT ALLOW bromine reacts faster than chlorine <br> ALLOW ORA <br> Answer must refer to the $\mathrm{C}-\mathrm{Cl}$ bond or $\mathrm{C}-\mathrm{Br}$ bonds |
|  | (b) | (i) | $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{I}$    | 4 | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) n.b. $\mathrm{C}_{2} \mathrm{H}_{5}$ is unambiguous but $\mathrm{C}_{3} \mathrm{H}_{7}$ is ambiguous <br> IGNORE incorrect name <br> Mark incorrect answers first of all. <br> - One incorrect answers maximum 3 marks <br> - Two incorrect answers maximum 2 marks <br> - Three incorrect answers maximum 1 mark <br> - Four incorrect answers scores 0 mark <br> ALLOW as a slip one stick with no H on in a displayed formula |


| Question |  | er | Marks | Guidance |  |
| :---: | :---: | :--- | :---: | :---: | :---: |
| 6 | (b) | (ii) | $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \checkmark$ | 1 | IGNORE any structures drawn |
|  |  |  |  |  | DO NOT ALLOW $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ |


| Question |  |  | er | Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | (b) | (iii) | infrared <br> $1700-1730 \mathrm{~cm}^{-1}$ indicates carbonyl group $\checkmark$ <br> broad $2900 \mathrm{~cm}^{-1}$ indicates $\mathrm{O}-\mathrm{H}$ bond AND it is a carboxylic acid $\checkmark$ <br> explanation mark <br> B has a branched structure because of relationship to methylpropene <br> OR <br> C has a branched structure because of relationship to methylpropene <br> OR <br> C must be a primary alcohol because it is oxidised to a carboxylic acid OR a primary alcohol because it reacts with acidified dichromate to make a carboxylic acid <br> OR <br> C cannot be a tertiary alcohol because it is oxidised OR cannot be a tertiary alcohol because it does react with acidified dichromate | 6 | ANNOTATE ANSWER WITH TICKS AND CROSSES ETC <br> LOOK ON THE SPECTRUM for labeled absorbances which can be given credit <br> ALLOW has a $\mathrm{C}=\mathrm{O}$ bond because it has absorbance within range $1640-1750 \mathrm{~cm}^{-1}$ <br> ALLOW $2900 \mathrm{~cm}^{-1}$ indicates $\mathrm{O}-\mathrm{H}$ in carboxylic acid ALLOW has $\mathrm{O}-\mathrm{H}$ bond in carboxylic aid because it has absorbance within range $2500-3300 \mathrm{~cm}^{-1}$ <br> The presence of carboxylic acid can be anywhere in the text including the structure for $\mathbf{D}$ <br> If two marking points from the explanation mark are given both must be correct |

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& \multicolumn{2}{|l|}{er} \& Marks \& Guidance \\
\hline \& \begin{tabular}{l}
\(B\) is \\
C is \\
D is
\end{tabular} \& \(\checkmark\)

$\checkmark$

$\checkmark$ \& \& | ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) |
| :--- |
| IGNORE incorrect names for $\mathbf{B}, \mathbf{C}$ and $\mathbf{D}$ |
| Mark correct branched structures first of all. |
| If there are no correct branched structures and $\mathbf{C}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ then ALLOW one mark for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and one mark for $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I}$ | \\

\hline \& \& Total \& 13 \& \\
\hline
\end{tabular}

