1 Alcohols A, B, C and D are shown below.

(a) Compound A is ethanol, a very useful alcohol.

Identify the two main methods used in the industrial production of ethanol. Write an equation for each method.

nethod 1	•••
quation	
" 10	
nethod 2	
	•••
quation[4]

- **(b)** A student heated each alcohol, **A**–**D**, with acidified potassium dichromate(VI) as the oxidising agent. With alcohols **A**, **B** and **C**, the colour turned from orange to green.
 - (i) Identify the organic product and write a balanced equation for the reaction of alcohol ${\bf B}$ with acidified potassium dichromate(VI).

Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).

organic product:

balanced equation:

(ii) The organic product obtained from **C** was analysed by infrared (IR) spectroscopy. The IR spectrum of the product is shown below.

Use your *Data Sheet* to identify the organic product. Explain your reasoning. organic product:

		reasoning	
			[3]
(c)		student heated alcohol D with ethanoic acid in the presence of an acid catalyst. anic product E was formed with a fruity smell.	An
	(i)	Name alcohol D .	
			[1]
	(ii)	Name the functional group in the organic product E .	
			[1]
	(iii)	Draw the structure of the organic product E .	

[Total: 13]

[2]

- 2 In this question, you are asked to suggest structures for several organic compounds2
 - (a) Compounds F, G and H are unbranched alkenes that are isomers, each with a relative molecular mass of 70.0.

Compounds **F** and **G** are *E*/*Z* stereoisomers.

Compound **H** is a structural isomer of compounds **F** and **G**.

- Explain what is meant by the terms *structural isomer* and *stereoisomer*.
- Explain why some alkenes have E/Z isomerism.
- Analyse this information to suggest possible structures for compounds **F**, **G** and **H**.

In your ans above.	•					

www.accesstuition.com

(b) An analytical chemist was provided with a compound **J** which has an unbranched carbon skeleton. After analysis, the chemist obtained the following results.

type of analysis	evidence
infrared spectroscopy	broad absorption at 3350 cm ⁻¹
percentage composition by mass	C, 70.59%; H, 13.72%; O, 15.69%
mass spectrometry	molecular ion peak at $m/z = 102.0$

Use this information to suggest all the possible structures for the unbranched compound J. In your answer you should make clear how your explanation is linked to the evidence.

[Total: 19]

3 Ethanoic acid, CH₃COOH, is used to make esters.

Some information about two of the processes used to make ethanoic acid is given below.

Process 1

This is a one-step process that involves the reaction of methanol with carbon monoxide.

$$\text{CH}_3\text{OH} + \text{CO} \rightarrow \text{CH}_3\text{COOH}$$

The conditions used are 180 °C and 30 atmospheres pressure. A rhodium/iodine catalyst is used.

The percentage yield for this process is 99%.

Process 2

This involves the oxidation of naphtha, a fraction obtained from crude oil.

Liquid naphtha is oxidised using air at a temperature of 180°C and 50 atmospheres pressure. No catalyst is needed.

A large variety of other products are also formed in this oxidation.

(a)	Suggest three advantages of making ethanoic acid using Process 1 rather than Process 2 .
	[3]

- (b) The other products formed in **Process 2** are carboxylic acids, aldehydes and ketones. A research chemist investigates some of these other products of **Process 2**.
 - (i) The research chemist isolates product, J.

The infrared spectrum of **J** is shown below.

The chemist also finds that 0.172 g of a pure sample of $\bf J$ contains 2.00 \times 10⁻³ mol of $\bf J$. Suggest, with reasons, **one** possible structure for $\bf J$.

www.accesstuitior	n.com

	(ii)	The chemist isolates another product, the carboxylic acid, K .
		${\bf K}$ has the molecular formula ${\bf C_4H_8O_2}$.
		Suggest a possible structure and name for K .
		structure
		name[2]
(c)	Eth	anoic acid is used in the manufacture of the ester, propyl ethanoate.
		scribe how ethanoic acid is converted into propyl ethanoate. lude an equation in your answer.
		[4]
		[Total: 14]

		uorocarbons, CFCs, were once used as propellants in aerosols. CFCs contribute to ozon n in the upper atmosphere.	е
(a)	A C	FC has the formula CF ₂ Cl ₂ .	
	Sta	te the three-dimensional shape of a $\mathrm{CF_2Cl_2}$ molecule and the F–C–C l bond angle.	
	sha	pe	
	bon	d angle[2	<u>?]</u>
(b)		reasons that $\mathrm{CF_2C}l_2$ was used as an aerosol propellant are that it has low reactivity an not hydrolyse in water.	d
	(i)	State one other reason why $\mathrm{CF_2Cl_2}$ was developed for use as an aerosol.	
	(ii)	Suggest why $\operatorname{CF_2Cl_2}$ does not hydrolyse in water.	
(c)		lain, with the aid of equations, how the presence of CFCs in the upper atmosphere lead zone depletion.	S
		[3	i]
(d)	Wh _i	y are scientists concerned about ozone depletion?	
		[1	J

(e)	International agreements have reduced the use of CFCs. However the concentration of atmospheric CFCs has hardly changed.
	Suggest two reasons why.
	[2]
	[Total: 10]

5 This question is about the six alcohols below. butan-2-ol ethane-1,2-diol 2-methylpentan-3-ol 2-methylpropan-2-ol propan-1-ol propan-2-ol (a) Which alcohol is an example of a tertiary alcohol?[1] **(b)** Draw the skeletal formula for 2-methylpentan-3-ol. [1] (c) Butan-2-ol and 2-methylpropan-2-ol are structural isomers. (i) What is meant by the term *structural isomer*?[1] (ii) Draw another structural isomer of these two alcohols. [1] (d) Ethane-1,2-diol can be dissolved in water to act as an anti-freeze in car radiators. Explain why ethane-1,2-diol is very soluble in water.

......www:accesstuition:com······[2]

(e)		ane-1,2-diol is heated under reflux with ethanoic acid and a small amount of H_2 alyst. Compound A is formed with molecular formula $C_6H_{10}O_4$.	SO ₄
	Dra	w the structure of compound A.	
			[2]
(f)	But	an-2-ol is heated with H ₂ SO ₄ catalyst.	
	•	A mixture of three alkenes forms, B , C and D . The alkenes B and C are stereoisomers.	
	(i)	Draw the structures of the two stereoisomers B and C .	
			[2]
	(ii)	What type of stereoisomerism is shown by B and C ?	[4]
	(iii)	Draw the structure of the other alkene, D , that is formed in this reaction.	[1]

(g) Alcohol **E** is one of the following alcohols.

butan-2-ol 2-methylpentan-3-ol propan-1-ol ethane-1,2-diol 2-methylpropan-2-ol propan-2-ol

A student oxidises alcohol **E** by heating under reflux with excess acidified potassium dichromate(VI). An organic product **F** is isolated.

The mass spectrum of the alcohol **E** is shown below.

The infrared spectrum of the organic product **F** is shown below.

Name or draw the structures of the alcohol E and the organic product F .
• Write an equation for the reaction of alcohol E with acidified potassium dichromate(VI).
Use [O] to represent the oxidising agent, acidified potassium dichromate(VI).
In your answer, you should make clear how each structure fits with the information given above.

[Total: 19]