F324: Rings, Polymers and Analysis 4.1.1. Arenes Mark Scheme /114

1. (a)

(b) (i) White precipitate OR white solid OR white crystals \checkmark

(ii) 1,2-Dibromocyclohexane \checkmark

ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR $C_{6} H_{10} B r_{2}$ OR structures
(iii) MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks
benzene electrons or π-bonds are delocalised
ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation
DO NOT ALLOW benzene has delocalised structure or ring
phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring

ALLOW diagram to show movement of lone pair into ring for phenol
cyclohexene electrons are localised OR delocalised between two carbons

ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene
DO NOT ALLOW cyclohexene has a $C=C$ double bond IGNORE slip if cyclohexene is written as cyclohexane but π-bonding correctly described
benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density

DO NOT ALLOW charge density OR electronegativity instead of electron density
benzene cannot polarise or induce a dipole in Br_{2} OR phenol can polarise the Br_{2} OR cyclohexene can polarise Br_{2} or the $\mathrm{Br}-\mathrm{Br}$ bond

2. (a) (i)

(ii) Introduces a permanent dipole on $\mathrm{Cl}_{2} /$ forms $\mathrm{Cl}^{+} /$
$\mathrm{AlCl} l_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{AlCl}_{4}^{-}+\mathrm{Cl}^{+} /$
$\mathrm{A} l \mathrm{Cl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl}{ }^{\delta+}-\mathrm{AlCl}_{3}{ }^{\delta-}(\mathbf{1})$
(iii)

correct dipole / Cl^{+}(1)
curly arrow from benzene ring to $\mathrm{C} l^{+} / \mathrm{Cl}^{8+}(\mathbf{1})$
intermediate (1)
curly arrow from H to regenerate benzene ring in intermediate (1) H^{+}as other product (1)
(iv) electrophilic substitution (1)
with electrophilic spelt correctly
(b) In benzene, π electrons are delocalised/spread out (1)

In alkenes, π electrons are concentrated between 2 carbons (1)
Electrophiles attracted more to greater electron density in alkenes (1)

3. Discussion of the π-bonding

p-orbitals overlap (1)
above and below the ring (1)
(to form) π-bonds / orbitals (1)
any of the first three marks are available from a labelled diagram

(π-bonds / electrons) are delocalised (1)
4 marks

Other valid points - any two of:

- ring is planar /
- C-C bonds are equal length / have intermediate length/strength between $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ /
- $\quad \sigma$-bonds are between C-C and/or C-H
- bond angles are 120°

MAX 2 out of 4 marks (1)(1)

Quality of written communication

two or more sentences with correct spelling, punctuation and grammar
4. (i)

II... $\mathrm{Na} / \mathrm{NaOH}$

(do not
penalise use of a nitrating mixture)
(ii) dye / colouring / indicator (1)
(iii) phenylamine (1)
$\mathrm{NaNO}_{2} / \mathrm{HNO}_{2}(\mathbf{1})+\mathrm{HCl}(\mathbf{1})$
$<10^{\circ} \mathrm{C}$ (1)
add to alkaline phenol (1)
5
5. bonding in benzene
overlap of p-orbitals / π bonds/electrons (or labelled) (1)

above and below the ring (or shown in a diagram) (1) electrons are delocalised (or labelled) (1)
$\mathrm{C}-\mathrm{C}$ bonds are: same length/strength / in between single and double / σ-bonded AW (1)
greater reactivity of phenol
(the ring is activated because ...)
lone pair from O is delocalised into the ring (1)
so electron density (of the ring) is increased (1)
so electrophiles are more attracted (to the ring) / dipole in electrophile more easily induced (1)
(NOT just more easily "attacked" or "susceptible")
Quality of written communication mark for at least two complete sentences in which the meaning is clear with correct spelling, punctuation and grammar (1)
6. (a) Correct structure of 3-nitrophenol or any multiple nitrated phenol (1)
(b) $\quad \mathrm{M}_{\mathrm{r}}$ phenol $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right)=94.0$ (1)
M_{r} 4-nitrophenol $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{3}\right)=139.0(1)$
expected mass/moles of nitrophenol from $100 \mathrm{~g}=$ $148 \mathrm{~g} / 1.06 \mathrm{~mol}$ (or ecf from wrong $\mathrm{M}_{\mathrm{r}} \mathrm{s}$) (1)
at 27% yield gives $40 / 39.9(\mathrm{~g})(\mathrm{or} \mathrm{ecf})(\mathbf{1})$
\quad last mark is for $0.27 \times$ expected mass to 2 or 3 sf
(c) conditions for nitration of benzene:
HNO_{3} is concentrated (1)
conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ is present (1)
heating or stated temp above $50^{\circ} \mathrm{C}$ (1)
explanation for greater reactivity of phenol
lone pair from O atom is delocalised into the ring (1)
greater (π) electron density around the ring (1)
(the benzene ring in phenol) is activated (1)
attracts electrophiles/ ${ }^{+} \mathrm{NO}_{2}$ more / makes it more susceptible to electrophiles AW (1)
quality of Written Communication mark for at least two legible sentences with correct spelling, punctuation and grammar
7.

allow bromination in any positions on the ring
8. delocalised electrons
electrons are spread over more than two atoms AW (1)
π-bond
formed by overlap of p-orbitals/ diagram to show (1)
9. (a) (i) bromine as an electrophile an electrophile accepts an electron pair (1) NOT a lone pair
bromine is polarised/has + charge (centre)/dipole on $\mathrm{Br}-\mathrm{Br} / \mathrm{Br}^{+}$ shown in diagram (1)
appropriate diagram showning a curly arrow from a double/ π bond to the $\mathrm{Br}^{\delta+} / \mathrm{Br}^{+}(\mathbf{1})$
eg

(ii) comparison of reactivity of cyclohexene and benzene benzene is (more) stable / more energy required (1)
benzene (π) electrons are delocalised (1)
benzene has lower electron/- charge density (1)
so bromine is less polarised /attracted to it /
benzene is less susceptible to electrophiles (1)
ora for cyclohexene
quality of written communication mark for any two of the the terms:
delocalised/localised, π-electrons/bonds/system, electron density, dative covalent, activation/stabilisation energy, halogen carrier, heterlytic fission, addition/substitution, polarity used appropriately (1)
(b) (i) iodobenzene because ...

Br is more electronegative than $\mathrm{I}(\mathbf{1})$ ora
so the I atom will be positive $/ \delta^{+} /$the electrophile (1)
(ii) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{IBr} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{I}+\mathrm{HBr}$ (1)
or ecf giving $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HI}$
10. (a) (i) $\mathrm{NaOH} / \mathrm{Na}$ (1)
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O} /$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{Na} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O} \mathrm{Na}^{+}+1 / 2 \mathrm{H}_{2}$ (1)
(b) (i)

(ii)

(iii) lone/electron pair from oxygen is delocalised into the ring /interacts with π-electrons (1)
increases π-electron density / negative charge (around the ring) (1)
attracts electrophiles more (1)
(c) $\quad \mathrm{M}_{\mathrm{r}}$ salicylic acid $=138$ (1)
moles $($ in $1: 1$ reaction $)=3500 \times 10^{6} / 138=2.536 \times 10^{7}(\mathbf{1})$
mass of phenol needed $=2.536 \times 10^{7} \times 94=2384$ tonnes $(\mathbf{1})$
allowing for 45% yield $=2384 \times 100 / 45=\mathbf{5 2 9 8} / \mathbf{5 3 0 0}$ (tonnes) (1) 4
allow 5297.5-5300
allow ecf throughout
11. methylation stage (can come anywhere)
$\mathrm{CH}_{3} \mathrm{Cl} / \mathrm{CH}_{3} \mathrm{Br}$ (1)
$\mathrm{A} / \mathrm{Cl}_{3} / \mathrm{FeBr}_{3}$ etc. (1)
equation - e.g. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$ (1)
intermediate name or unambiguous structure (1)
4 marks
intermediates and equations will vary if methylation is done after nitration or reduction
nitration stage
(conc) $\mathrm{H}_{2} \mathrm{SO}_{4}(1)$
(conc) HNO_{3} (1)
equation - e.g.: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{3}\right) \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ (1)
intermediate - name or unambiguous structure (1)
4 marks

```
reduction stage
tin/iron (1)
HCl (1)
equation - e.g.: }\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{H}}{4}{}(\mp@subsup{\textrm{CH}}{3}{})\mp@subsup{\textrm{NO}}{2}{}+6[\textrm{H}]->\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{H}}{4}{}(\mp@subsup{\textrm{CH}}{3}{})\mp@subsup{\textrm{NH}}{2}{}+2\mp@subsup{\textrm{H}}{2}{}\textrm{O
                    or with }\mp@subsup{\textrm{H}}{}{+}\mathrm{ also on left to give }\mp@subsup{\textrm{C}}{6}{}\mp@subsup{\textrm{H}}{4}{}(\mp@subsup{\textrm{CH}}{3}{})\mp@subsup{\textrm{NH}}{3}{+}\mathrm{ (1)
3 marks
```

 allow other suitable reducing agents:
 Quality of Written Communication mark for a well organised answer with the three stages clearly distinguished and sequenced (1)
12. (a) any two of ...
fibres / dyes / explosives / pharmaceuticals etc (1)(1)
allow any specific examples as long as they do involve aromatic nitro or amine groups - eg NOT nylon, fertiliser etc
(b) temp $50-60^{\circ} \mathbf{(1)}$
concentrated (acids) (1)
allow abbreviations for concentrated
(c) $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$ reactants (1) products (1)
allow a balanced equation for multiple nitration at any positions
(d) (i) a pair of electrons ... (1)
... (electrons) move / transferred /
a (covalent) bond breaks/forms (1)2
(ii) it accepts a pair of electrons (from the benzene) (1)

NOT a 'lone' pair
(iii) $\left.\mathrm{H}^{+}\right)$(on the ring) is replaced by $\mathrm{NO}_{2}\left(^{+}\right.$) (1)
allow 'substitutes'
ignore + charges
(iv) it is not used up / reformed at the end AW (1)
(e) π-bonding electrons are delocalised (1)
six π-electrons in benzene (1)
four π-electrons in the intermediate (1)
π-electrons are not over one carbon atom /
over five carbon atoms / p-orbitals in the intermediate (1)
this must be stated in words to compare benzene and the intermediate
π-electrons are over the complete ring / all around the ring
all six carbon atoms/ p-orbitals overlapping (1)
Quality of written communication
for at least two sentences/statements with legible text and correct spelling, punctuation and grammar (1) 6

