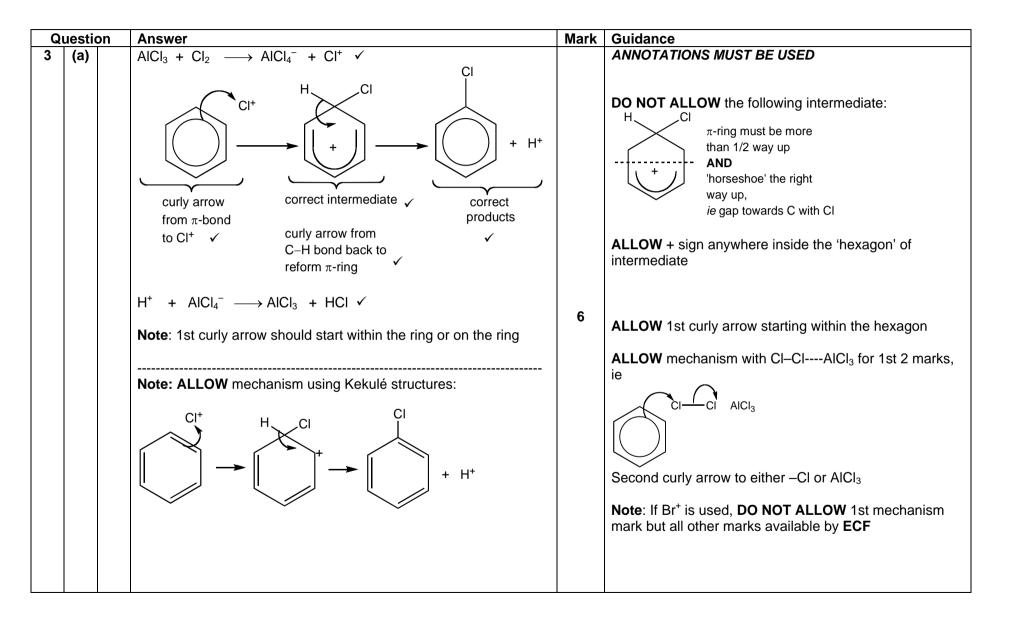

	Questic	on	Answer	Mark	Guidance
			Where circles have been placed round charges,	this is fo	or clarity only and does not indicate a requirement
1	(a)	(i)	O ^O Na [⊕]	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					DO NOT ALLOW —O—Na OR -COO-Na (covalent bond)
			COO Na ✓		ALLOW –O ⁻
					ALLOW delocalised carboxylate
					 (Na ⁺)
1	(a)	(ii)	(Bromine) would be decolourised/turn (from	1	IGNORE goes clear
			orange/red/yellow/brown) to colourless		DO NOT ALLOW other colours for bromine
			OR white precipitate/solid/emulsion (formed) \checkmark		IGNORE cream precipitate
					DO NOT ALLOW salicylic acid turns colourless/decolourised
					IGNORE temperature/fumes
1	(a)	(iii)	OH + $Br_2 \rightarrow OH$	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
					MUST be all correct to score mark
			Соон Br Соон + HBr		ALLOW molecular formulae, i.e. $C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br+ HBr$
			\checkmark		

	Question		Answer	Mark	Guidance
1	(a)	(iv)	(CH ₃) ₂ CHOH/CH ₃ CH(OH)CH ₃ /propan(-)2(-)ol	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			AND acid/H⁺/H₂SO₄ (catalyst) ✓		ALLOW 2-propanol
					DO NOT ACCEPT incorrect name or incorrect formula of alcohol
					IGNORE reflux/concentrated (acid)
1	(b)	(i)	Image: Product of the system OH Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image: Product of the system Image:	4	ALLOW mechanism with Br^+ electrophile (Maximum 3 marks) $\downarrow \qquad \qquad$

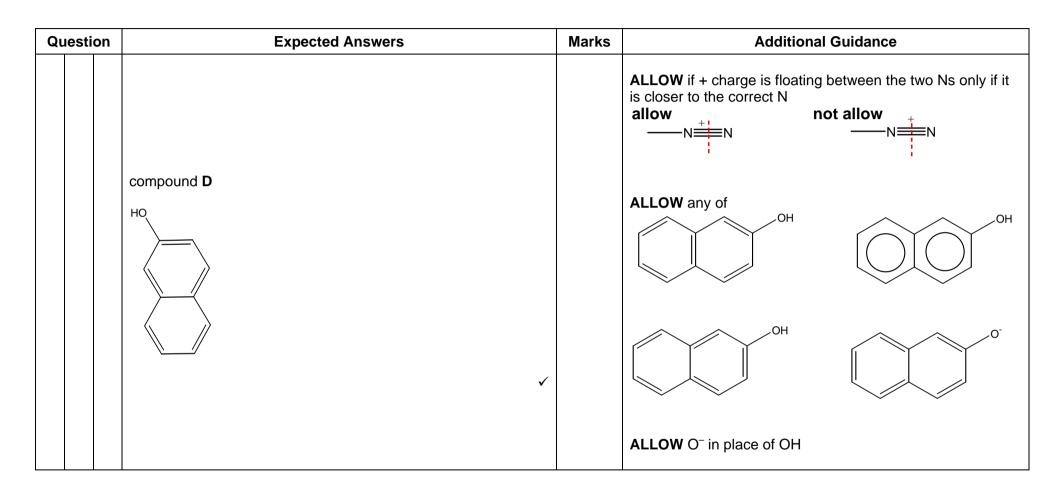
	Questi	on	Answer	Mark	Guidance
1	(b)	(ii)	(In salicylic acid) lone pair/pair of electrons on O(H)/phenol is ~	3	ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
			(partially) delocalised into the ring \checkmark		ALLOW lone pair/pair of electrons on O(H)/phenol is (partially) drawn/attracted/pulled into delocalised ring
			electron density increases/is high ORA ✓		IGNORE 'activates the ring'
					ALLOW more electron rich
					DO NOT ALLOW charge density or electronegativity
			Br ₂ /electrophile is (more) polarised ORA \checkmark		ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
					ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine/electrophile)
			QWC : delocalised/delocalized/delocalise <i>etc</i> . must be spelled correctly in the correct context at least once		Delocalise(d) needed to score the first marking point
1	(c)	(i)	Step 1	4	
			Add HNO ₃ ✓		ALLOW reagent mark if HNO ₃ in equation
			OH + HNO ₃ \longrightarrow OH +		IGNORE H_2SO_4 (NOTE : H_2SO_4 not required with phenols)
					IGNORE concentrations of acids/temperature
			\sim COOH O_2N \sim COOH H_2O		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			4		Equations MUST be completely correct for one mark each

C	Questi	ion	Answer	Mark	Guidance
			Step 2 Tin AND concentrated HC $l \checkmark$ O_2N OH + 6 [H] O_2N OH + 2 H ₂ O H_2N OH + 2 H ₂ O		DO NOT ALLOW 3H ₂
1	(c)	(ii)	Nitrogen electron pair OR nitrogen lone pair accepts a proton/H ⁺ ✓	1	 DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H⁺ required) ALLOW nitrogen donates an electron pair/lone pair to H⁺ IGNORE NH₂ group donates electron pair
1	(c)	(iii)	compound A $(OH) = (OH) = ($	2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW $-N_2Cl$ OR $-N_2^+Cl^-$ DO NOT ALLOW $-N\equiv N^+$ OR $-N\equiv N^+Cl^-$ DO NOT ALLOW $-N_2$ -Cl (covalent bond)



www.accesstuition.com

C	Question	er	Marks	Guidance
2	(a)	In benzene, electrons OR π -bond(s) are delocalised \checkmark		ANNOTATIONS MUST BE USED
				ALLOW diagram with (π-bond) electrons AND delocalised labelled
		QWC requires delocalised/delocalized spelled correctly and used in correct context		IGNORE benzene has delocalised structure or ring
		In alkenes, Π -electrons are OR Π -bond is AND		ALLOW diagram with π-bond labelled ALLOW pi bond for π-bond
		localised OR between two carbons ✓		$\pi\text{-}bond\;OR\;\pi\text{-}electrons\;essential$ for this mark
		benzene has a lower electron density OR alkene/C=C has a higher electron density ✓ <i>Comparison</i> essential		IGNORE charge density DO NOT ALLOW electronegativity
				ALLOW Br–Br for Br ₂ ALLOW electrophile for Br ₂
		benzene polarises bromine / Br2 LESS		ALLOW benzene does NOT polarise bromine / Br ₂ OR alkene/C=C polarises Br ₂
		OR benzene attracts bromine / Br ₂ LESS		ALLOW benzene does NOT attract bromine / Br ₂ OR alkene/C=C attracts Br ₂
		OR benzene induces a weaker dipole in bromine / $Br_2 \checkmark$	4	ALLOW benzene does NOT induce dipole in bromine / Br_2 OR alkene/C=C induces dipole in Br_2


Question	er	Marks	Guidance
(b) (H = C = C = H	1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous
(ii)	6 ✓	1	NO ECF from (i)
(iii)	Two of the three structures below with 1 mark for each correct structure $\checkmark \checkmark$	2	 ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous Structures must clearly show position of Br on benzene ring in relation to side chain ALLOW ECF from (i) if BOTH Br atoms on same carbon on side chain DO NOT ALLOW ECF from (i) if EITHER bromine has been substituted onto the benzene ring
(iv)	<pre>reaction 1: electrophilic addition ✓ reaction 2: electrophilic substitution ✓</pre>	2	ALLOW electrophile addition ALLOW electrophile substitution ALLOW other phonetic spellings for electrophilic, e.g. electrophylic, etc.
	Total	10	

www.accesstuition.com

Qu	estic	on	er	Mark	Guidance
	(b)	(i)	2 CI + CI ₃ CCHO		Each mark is independent of the other ALLOW C ₆ H ₅ Cl for chlorobenzene ALLOW any unambiguous structure for Cl ₃ CCHO, e.g. CCl ₃ CHO BUT DO NOT ALLOW CCl ₃ COH
			+ H_2O 1st mark : reactants, correctly balanced, \checkmark <i>ie</i> 2 C ₆ H ₅ Cl + Cl ₃ CCHO 2nd mark : product, (correctly balanced) \checkmark <i>ie</i> H ₂ O	2	Standalone mark Standalone mark
		(ii)	6 ✓	1	
	(c)		substitution/nitration/NO₂ at different positions (on the ring) OR forms different isomers OR multiple substitution/nitration ✓	1	ALLOW examples, e.g. 1-chloro-2-nitrobenzene and 1-chloro-2-nitrobenzene ALLOW 'it' for nitro group ALLOW examples, e.g. 1-chloro-2,3-dinitrobenzene IGNORE nitrate/NO ₃
	(d)		In phenol, (lone) pair of electrons on O is (partially) delocalised into the ring ✓ QWC : delocalised/delocalized/delocalise, etc must be spelt correctly in the correct context for benzene OR phenol at least once electron density increases/is high ✓ ORA		ANNOTATIONS MUST BE USED ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned ALLOW lone pair of electrons on O is (partially) drawn/ attracted/pulled into delocalised ring IGNORE 'activates the ring' DO NOT ALLOW charge density or electronegativity
			Cl₂/electrophile is (more) polarised ✓ ORA	3	ALLOW Cl ₂ is (more) attracted OR Cl ₂ is not polarised by benzene OR induces dipoles (in chlorine/electrophile)
			Total	13	

Question	Expected Answers	Marks	Additional Guidance
4 a	Bond length intermediate between/different from (short) C=C and (long) C–C \checkmark ΔH hydrogenation less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark Only reacts with Br ₂ at high temp or in presence of a halogen carrier / resistant to electrophilic attack \checkmark Please annotate, use ticks to show where marks are awarded	3	ALLOW all carbon–carbon bonds the same length ALLOW ΔH hydrogenation less (negative) than expected ALLOW ΔH hydrogenation different from that expected DO NOT ALLOW ΔH halogenation/hydration ALLOW doesn't decolourise/react with/polarise Br ₂ ALLOW doesn't undergo addition reactions (with Br ₂)
b i	compound A if NO ₂ in wrong position penalise here and ECF for rest of b(i) and b(ii) \checkmark compound B \checkmark compound C \checkmark	4	ALLOW any 4-nitro-1,3-dimethylbenzene drawn in any orientation ALLOW H_3C

Question	Expected Answers	Marks	Additional Guidance
ii	<u>mark 1</u> HNO ₃ + 2H ₂ SO ₄ \rightarrow H ₃ O ⁺ + 2HSO ₄ ⁻ + NO ₂ ⁺ \checkmark		Equation to show formation of NO_2^+ ion \checkmark ALLOW HNO ₃ + H ₂ SO ₄ \rightarrow H ₂ O + HSO ₄ ⁻ + NO ₂ ⁺ HNO ₃ + H ₂ SO ₄ \rightarrow HSO ₄ ⁻ + H ₂ NO ₃ ⁺ \rightarrow H ₂ O + NO ₂ ⁺
IO ₂ is in rect position not penalise en if npound A in) is not in rect position	$\underbrace{\underline{mark 4}}_{\text{to reform }\pi \text{ ring }\underline{\text{AND}}}_{\text{correct products }\checkmark}$	5	ALLOW mark 2 curly arrow must be from 1,3- dimethylbenzene to NO_2^+ and ECF for marks 3 and 4 DO NOT ALLOW intermediate π -ring must be more than $1/2$ +
	mark 2 arrow from π ring to ${}^{+}NO_{2} \checkmark$ mark 3 intermediate with π ring broken in the correct place \checkmark Link to compound A in part (i) - cannot score full marks [in b(i) & b(ii)] if NO2 is not adjacent to a methyl		ALLOW CH_3s shown ALLOW $H_3O^+ + HSO_4^- \rightarrow H_2O + H_2SO_4$
	2 ✓	1	No other correct response
	Total	13	