Question

	uestion	er	Mark	Guidance
1	$\stackrel{(b}{)}$		2	ALLOW any correct unambiguous structures ALLOW NO ${ }_{2}-$ Note: connectivity is NOT being assessed in this part
1	(c)	1st stage isomer: isomer $3 \checkmark$ product: reagents: Sn AND (conc) $\mathrm{HCl} \checkmark$ equation:		ANNOTATIONS MUST BE USED ALLOW structure of isomer 3 shown separately OR in equation ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH ${ }_{3} \mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NH}_{2}\right)_{2}$ ALLOW $\mathrm{Zn}+\mathrm{HCl} / \mathrm{H}_{2}+$ metal catalyst/ $/ \mathrm{LiAlH}_{4} / \mathrm{Na}$ in ethanol IGNORE NaBH_{4} ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH IF isomer 3 OR product are given in equation but not shown previously then credit here Also credit reagents here if shown (eg above arrow) ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

Question			Expected Answers	Marks	Additional Guidance
2	(a)			1	ALLOW $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^{+}
	(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles DO NOT ALLOW $\mathrm{Br}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{OH}$ OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane \checkmark	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2}$ OR structures
		(iii)	MUST spell delocalised/delocalized or localised/localized correctly once in the answer to obtain all 5 marks benzene electrons or π-bonds are delocalised \checkmark phenol a lone or non-bonded pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in $\mathrm{Br}_{2} \mathrm{OR}$ phenol can polarise the Br_{2} OR cyclohexene can polarise Br_{2} or the $\mathrm{Br}-\mathrm{Br}$ bond \checkmark	5	ALLOW diagram to show overlap of all $6 p$-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a $\mathrm{C}=\mathrm{C}$ double bond IGNORE slip if cyclohexene is written as cyclohexane but π bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW $\mathrm{Br}^{\delta+}$ OR electrophile Br^{+}as alternate to polarise

Question			Answer	Mark	Guidance
3	(a)	(i)	M1 p-orbitals overlap (to form pi/m-bonds) M2 m-bond(s) are delocalised in structure B M3 m-bonds are localised/between two carbons in structure A M4 AND Diagrams show correct position of delocalised and localised π-bonds/ π-electrons OR correct position of p-orbital overlap QWC requires delocalised/delocalized spelled correctly and used in correct context	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE p-orbitals overlap to form sigma bonds ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or m-bonds) ALLOW π-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds/ π-electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram IGNORE charge density DO NOT ALLOW electronegativity Structures do not need to be labelled A and B if the description matches the structure

Question		Answer	Mark	Guidance
	(i)	structure $B /$ delocalised structure is (more) stable structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) $357\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	ALLOW structure B is low in energy IGNORE structure \mathbf{B} is less reactive ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times(-) 119$ IGNORE more positive than (-)357 $\mathrm{kJ} \mathrm{mol}^{-1}$ ALLOW enthalpy change is less than $3 x$ enthalpy change for cyclohexene ALLOW structure B is more stable by $149 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (2 marks) DO NOT ALLOW more/less energy needed for the reaction Answer must refer to data given in the question and must be a comparison IGNORE $360 \mathrm{~kJ} \mathrm{~mol}^{-1}$ No marks can be awarded if structure \mathbf{A} is selected
(b)		curly arrow from $\mathrm{C}-\mathrm{N}$ bond to N^{+} curly arrow from lone pair on fluoride ion to positive charge on benzene ring	2	First curly arrow must come from bond not from C atom ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom ALLOW second curly arrow from negative charge on fluoride ion ALLOW second curly arrow to carbon atom with positive charge

Question		Answer	Mark	Guidance
(c)		$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}+\mathrm{FeBr}_{3} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}+\mathrm{FeBr}_{4}^{-}$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW positive charge anywhere on the electrophile IGNORE AICl ${ }_{3}$ OR AlBr_{3}
(d)	(i)	First reactant $=\mathrm{HNO}_{2} \checkmark$ Second reactant $=$ Third reactant $=$	3	ALLOW $\mathrm{NaNO}_{2}+\mathrm{HCl}$ OR $\mathrm{HNO}_{2}+\mathrm{HCl}$ IGNORE conditions/concentration ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer $=1.35(\mathrm{~g})$ award 3 marks IF answer $=0.54(\mathrm{~g})$ award 2 marks (no scale-up) IF answer $=0.216(\mathrm{~g})$ award 2 marks (incorrect scale-up) $n($ compound D$)=1.73 / 346=0.00500 \mathrm{~mol}$ $n(1,3$-diaminobenzene) required $=100 / 40 \times 0.005$ $=0.0125 \mathrm{~mol}$ Molar mass of 1,3-diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(108)(0.0125)=1.35 \mathrm{~g}$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n (compound D) $=1.73 / 346=0.00500 \mathrm{~mol}$ Molar mass of 1,3 -diaminobenzene $=108\left(\mathrm{~g} \mathrm{~mol}^{-1}\right)$ AND Mass of 1,3-diaminobenzene $=(0.00500)(108)=0.540 \mathrm{~g}$ Mass of 1,3 -diaminobenzene required $=(0.540)(100 / 40)=$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives $108 / 364 \times 1.73=0.54 \mathrm{~g}$ $0.54 / 40 \times 100=1.35 \mathrm{~g}$
(iii)	(compound D has) two chiral centres Four optical isomers exist (Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts OR use natural chiral molecules OR single isomers (as starting materials)	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres ALLOW four enantiomers OR two pairs of enantiomers INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex/catalyst OR stereoselective transition metal complex/catalyst ALLOW 'chiral pool'/chiral auxiliary
	Total	18	

