

Question		on	er	Mark	Guidance
	(c)	(i)	2nd stage organic compound: HOOC–CH₂–COOH ✓	6	DO NOT ALLOW molecular formula ALLOW name of compound: propanedioic acid OR propane-1,3-dioic acid ALLOW absence of 'e' after 'propan' ALLOW acyl dichloride: CIOC-CH ₂ -COCI ALLOW cyclic acid anhydride of propanedioic acid: CH_2 O=C C=C C=0
			<i>type of polymer</i> . polyamide ✓		ALLOW Nylon or Kevlar DO NOT ALLOW polypeptide DO NOT ALLOW amide
			Total	12	

Question		ion	Expected Answers	Marks	Additional Guidance
2	(a)		$\langle \bigcirc \rangle$ + Br ₂ \rightarrow $\langle \bigcirc \rangle$ - Br + HBr \checkmark	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+
	(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt and bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures
		(iii)	MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>m-bonds</u> are delocalised \checkmark phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in Br ₂ OR phenol can polarise the Br ₂ OR cyclohexene can polarise	5	ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density

Question			Answer	Mark	Guidance
3	(a)	(i)		4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			M1		
			p-orbitals overlap (to form pi/ π -bonds) \checkmark		IGNORE p-orbitals overlap to form sigma bonds
			M2 π-bond(s) are <u>delocalised</u> in structure B \checkmark		ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π -bonds)
			M3 π-bonds are localised/between two carbons in structure A ✓		ALLOW π-electrons/p-orbital overlap localised/between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds/π-electrons/p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram
					Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram
			Diagrams show correct position of delocalised and		IGNORE charge density
			localised π-bonds/π-electrons		DO NOT ALLOW electronegativity
			OR correct position of p-orbital overlap \checkmark		Structures do not need to be labelled A and B if the description matches the structure
			✓ QWC		
			requires delocalised/delocalized spelled correctly and used in correct context		

Question		Answer	Mark	Guidance
	(ii)	structure B/delocalised structure is (more) stable	2	ALLOW structure B is low in energy
		\checkmark		IGNORE structure B is less reactive
		structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kJ mol ⁻¹) ✓		ALLOW enthalpy change/hydrogenation for benzene is less (negative) than $3 \times (-)119$
				IGNORE more positive than (-)357 kJ mol ⁻¹
				ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene
				ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks)
				DO NOT ALLOW more/less energy needed for the reaction
				Answer must refer to data given in the question and must be a comparison
				IGNORE 360 kJ mol ⁻¹
				No marks can be awarded if structure A is selected
(t)		2	
		•1		First curly arrow must come from bond not from C atom
		curly arrow from C–N bond to N^* 🗸		ALLOW first curly arrow to nitrogen atom OR to positive charge on nitrogen atom
				ALLOW second curly arrow from negative charge on fluoride ion
		curly arrow from lone pair on fluoride ion to positive charge on benzene ring \checkmark		ALLOW second curly arrow to carbon atom with positive charge

Q	Question		Answer	Mark	Guidance
	(c)		$(CH_3)_2CHBr + FeBr_3 \longrightarrow (CH_3)_2CH^+ + FeBr_4^-$	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
					ALLOW positive charge anywhere on the electrophile
	(d)	(i)	First reactant = $HNO_2 \checkmark$	3	ALLOW NaNO ₂ + HCI OR HNO ₂ + HCI
					IGNORE conditions/concentration
			Second reactant =		
			Br		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
			BrNH2		
			\checkmark		
			Third reactant =		ALLOW
			HO NH2		Он
			OH V		

www.accesstuition.com

Question	Answer	Mark	Guidance
(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up)	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible
	IF answer = 0.216 (g) award 2 marks (incorrect scale-up) $n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol } \checkmark$ $n(1,3\text{-diaminobenzene}) \text{ required} = 100/40 \times 0.005$ $= 0.0125 \text{ mol } \checkmark$ Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark		ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n(compound D) = $1.73/346 = 0.00500$ mol Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = $(0.00500)(108) = 0.540$ g Mass of 1,3-diaminobenzene required = $(0.540)(100/40) =$ 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 x 1.73 = 0.54 g 0.54/40 x100 = 1.35 g
(iii)	(compound D has) two chiral centres ✓	3	ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	Four optical isomers exist ✓		ALLOW four enantiomers OR two pairs of enantiomers
	(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR <u>chiral</u> catalysts OR use natural chiral molecules OR single isomers (as starting materials) ✓		INDEPENDENT MARK ALLOW biological catalysts ALLOW <u>chiral</u> transition metal complex/catalyst OR <u>stereoselective</u> transition metal complex/catalyst ALLOW ' <u>chiral</u> pool'/chiral auxiliary
	Total	18	