1. (i) ${ }^{153} \mathrm{Eu}$ has (2) more neutrons

OR
${ }^{153}$ Eu has 90 neutrons AND ${ }^{151}$ Eu has 88 neutrons
ALLOW There are a different number of neutrons IGNORE Correct references to protons / electrons DO NOT ALLOW Incorrect references to protons / electrons
(ii) (It has the) same number of protons AND electrons

OR

Both have 63 protons and 63 electrons
ALLOW Same number of protons $\boldsymbol{A N D}$ same electron configuration
DO NOT ALLOW 'Same number of protons' without reference to electrons (and vice versa)
2. (a) Mass of the isotope compared to $1 / 12$ th OR
mass of the atom compared to $1 / 12$ th
(the mass of a) carbon-12 OR ${ }^{12} \mathrm{C}$ (atom)
IGNORE Reference to average OR weighted mean (i.e. correct definition of relative atomic mass will score both marks)
ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of carbon-12 for two marks.
ALLOW 2 marks for:
'Mass of the isotope OR mass of the atom compared to ${ }^{12} \mathrm{C}$ atom given a mass of 12.0'
i.e. 'given a mass of 12 ' $\mathbf{O R}$ C12 is 12 communicates the same idea as $1 / 12$ th.'
ALLOW 12C OR C12
ALLOW 2 marks for:
mass of the isotope
mass of $1 / 12$ th mass of carbon -12
i.e. fraction is equivalent to 'compared to'

ALLOW 1 mark for a mix of mass of atom and mass of mole of atoms, i.e. 'mass of the isotope/mass of an atom compared with 1/12th the mass of a mole OR 12 g of carbon-12.'
DO NOT ALLOW mass of 'ions' OR mass of element
(b) $\frac{(151 \times 47.77)+(153 \times 52.23)}{100}$

OR
$72.1327+79.9119$
OR
152.0446 (calculator value)
$A_{\mathrm{r}}=152.04$
ALLOW Correct answer for two marks
ALLOW One mark for ECF from transcription error in first sum provided final answer is to 2 decimal points and is to between 151 and 153 and is a correct calculation of the transcription
3. (i) (atoms of the) same element $\mathbf{O R}$ same atomic no. OR no. of protons

AND
with different numbers of neutrons OR different masses
IGNORE 'same number of electrons'
DO NOT ALLOW 'different numbers of electrons'
DO NOT ALLOW 'different relative atomic masses'
DO NOT ALLOW 'elements with different numbers of neutrons' without mention of same protons $\boldsymbol{O R}$ same atomic number
(ii) same (number of) electrons (in the outer shell)

OR

same electron configuration OR structure
DO NOT ALLOW different number of protons
IGNORE 'same number of protons'
IGNORE 'they are both carbon' OR 'they are both the same element'
(iii) mass of the isotope compared to $1 / 12$ th OR
mass of the atom compared to $1 / 12$ th
(the mass of a) carbon-12 OR ${ }^{12} \mathrm{C}$ (atom)
IGNORE reference to average $\boldsymbol{O R}$ weighted mean
(i.e. correct definition of relative atomic mass will score both marks)

ALLOW mass of a mole of the isotope/atom with 1/12th the mass of a mole OR 12 g of \checkmark
carbon-12
ALLOW 2 marks for:
'mass of the isotope OR mass of the atom compared to ${ }^{12} \mathrm{C}$
atom given a mass of 12.0^{\prime}
i.e. 'given a mass of 12 ' communicates the same idea as 1/12th.'

ALLOW 12C OR C12
ALLOW FOR 2 MARKS:
mass of the isotope
mass of 1/12th mass of carbon -12
i.e. fraction is equivalent to 'compared to'

ALLOW 1 MARK FOR a mix of mass of atom and mass
of mole of atoms, i.e.:
'mass of the isotope/mass of an atom compared with
1/12th the mass of a mole OR 12 g of carbon-12.
4. (i)

	protons	neutrons	electrons
${ }^{24} \mathrm{Mg}$	12	12	12
${ }^{25} \mathrm{Mg}$	12	13	12

${ }^{24} \mathrm{Mg}$ line correct
${ }^{25} \mathrm{Mg}$ line correct
mark by row
(ii) $\frac{24 \times 78.60+25 \times 10.11+26 \times 11.29}{100}$

OR $18.8640+2.5275+2.9354$
OR 24.3269
$\mathrm{A}_{\mathrm{r}}=24.33$ (to 4 sig figs)
ALLOW two marks for $A_{r}=24.33$ with no working out
ALLOW one mark for ecf from incorrect sum provided final answer is between 24 and 26 and is to 4 significant figures, e.g. $24.3235 \boldsymbol{x}$ gives ecf of $24.32 \checkmark$
(iii) The (weighted) mean mass of an atom OR (weighted) average mass of an atom relative to $1 / 12^{\text {th }}$ (the mass)
of (one atom of) ${ }^{12} \mathrm{C} \checkmark$
ALLOW The (weighted) mean mass
OR (weighted) average mass of an atom OR average atomic mass compared with (the mass of) carbon-12 which is 12
For 1st marking point, ALLOW mean mass of the isotopes
OR average mass of the isotopes Do NOT ALLOW the singular: isotope ALLOW mass of one mole of atoms compared to $1 / 12^{\text {th }}$ (the mass) of one mole / 12 g of carbon-12
mass of one mole of atoms \checkmark $1 / 12^{\text {th }} \checkmark$ the mass of one mole / 12 g of carbon-12
5. (i) atoms of the same element with different numbers of neutrons/different masses (1)
(ii) ${ }^{79} \mathrm{Br} 35$ protons, 44 neutrons, 35 electrons (1)
${ }^{81} \mathrm{Br} 35$ protons, 46 neutrons, 35 electrons (1)
(iii) $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}(\mathbf{1}) \quad 1$
6. Molar mass of anhydrous calcium nitrate $=164.1 \mathrm{~g} \mathrm{~mol}^{-1}(\mathbf{1})$ Ratio $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}: \mathrm{H}_{2} \mathrm{O}=69.50 / 164.1: 30.50 / 18$
or $0.4235: 1.694$ or $1: 4$ (1)
Formula $=\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
7. (a) (atoms of) same element/same atomic number..... with different numbers of neutrons/different masses $\checkmark \quad 1$
(b) 3

isotope	percentage composition	number of		
		protons	neutrons	electrons
${ }^{85} \mathrm{Rb}$	71 to 73	37	48	37
${ }^{87} \mathrm{Rb}$	27 to 29	37	50	37
mark	must add up to $100 \checkmark$			

ie 1 mark for each atomic structure; 1 for $\%$ compositions.
$A_{r}=\frac{(85 \times 72)+(87 \times 28)}{100} / 85.56$
$=85.6 \checkmark$ 2nd mark for significant figures
71/29: $85.58=85.6$
$73 / 27: 85.54=85.5$
(c) carbon-12/2 ${ }^{12} \checkmark$ 1
8. (i)

	protons	neutrons	electrons		
${ }^{25} \mathrm{Mg}$	12	13	12	\checkmark	
${ }^{26} \mathrm{Mg}$	12	14	12	\checkmark	2

(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$
$24 \times 78.60 / 100+25 \times 10.11 / 100+26 \times 11.29 / 100 \checkmark$
(iii) $=24.33 \checkmark$ (calc value: 24.3269 . This scores one mark)
24.32 with no working, award 1 mark only.
24.3 with no working, no marks (Periodic Table value)

2
9. (i) (atoms of) same element/same atomic number/number of protons with different numbers of neutrons/diff masses \checkmark
(ii)
proton neutron electron

relative mass 1	1	$\frac{1}{1840} /$	negligible
relative charge	+1	0	-1

i.e. I mark for each correct row
for electron, accept 1/1500-1/2000
for charges, accept + ; 0; -
10. (i) average atomic mass/weighted mean/average mass
compared with carbon-12
$1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is 12 OR
(ii) The mass of 1 mole of atoms of an element
compared with $12 \mathrm{~g} \checkmark$ of carbon-12 \checkmark
$\mathrm{A}_{\mathrm{r}}=\frac{(121 \times 57.21)+(123 \times 42.79)}{100} / 121.8558$
$=121.9$
11.

isotope	protons	neutrons	electrons
${ }^{12} \mathrm{C}$	6	6	6
${ }^{13} \mathrm{C}$	6	7	6

12. (i) mass spectrometry
(ii) mass of an isotope compared with carbon-12 \checkmark
$1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is 12
mass of 1 mole of the isotope/mass of 1 mole of carbon- 12
is equivalent to the first mark
"mass of the isotope that contains the same number of
atoms as are in 1 mole of carbon-12" $\rightarrow 1$ mark (mark lost because of mass units)
(iii) $12 \times 95 / 100+13 \times 5 / 100$ OR 12.05 $=12.1$ (mark for significant figures)
(12.1 scores both marks)
13. (a) (i) atoms of same element/same atomic number..... with different numbers of neutrons/different masses

| (ii)isotope protons neutrons
 electrons 2
 ${ }^{46} \mathrm{Ti}$ 22 24
 $22 \checkmark$
 ${ }^{47} \mathrm{Ti}$ 22 | 25 | $22 \checkmark$ |
| :--- | :---: | :---: | :---: | :---: |

(b) $\quad A_{r}=\frac{(46 \times 8.9)+(47 \times 9.8)+(48 \times 81.3)}{100} / 47.724$

$$
=47.7 \checkmark
$$

14. (i) ${ }^{79} \mathrm{Br}$ has two \checkmark less neutrons than ${ }^{81} \mathrm{Br} \checkmark$
(ii) ${ }^{79} \mathrm{Br}$ have same numbers of protons and same number of electrons \checkmark
15. $\begin{array}{lccc}\text { isotope } & \text { protons } & \text { neutrons } & \text { electrons } \\ \text { nickel-58 } & 28 & 30 & 28 \\ \text { nickel-60 } & 28 & 32 & 28 \\ \text { nickel-62 } & 28 & 34 & 28 \\ & \checkmark & & \checkmark \\ & & \checkmark\end{array}$

For ecf, 3rd column same as first column.
16. (i) mass spectrometry \checkmark
mass spec... /mass spectrometer should also be credited
(ii) average mass/weighted mean mass of an atom compared with carbon-12 $1 / 12$ th of mass of carbon-12/on a scale where carbon-12 is 12 mass of 1 mole of atoms (of an element) mass of 1 mole of carbon-12 is equivalent to first two marks
"mass of the element that contains the same number of atoms as are in 1 mole of carbon-12" $\rightarrow 2$ marks (mark lost because of mass units)
$\begin{array}{rlr}\text { (iii) } & 63.0 \times 77.2 / 100+65.0 \times 22.8 / 100 / 63.456 \checkmark \\ & =63.5 \text { (mark for significant figures) } \checkmark & 2\end{array}$
(iv) copper/ $\mathrm{Cu} \checkmark \quad 1$

