1. (i) Decane \checkmark

DO NOT ALLOW deceane

(ii) Skeletal formula of branched $C_{10}H_{22}$ \checkmark

Formula **must** be skeletal **AND** must not include any symbol, e.g. CH₃

(iii) Decane has more surface contact
 OR branched chains have less surface contact ✓

Both answers need to be comparisons Assume 'it' refers to decane IGNORE surface area ALLOW straight chains can get closer together OR branched chains cannot get as close to one another IGNORE branched chain are more compact

Decane has more van der Waals' forces OR branched chains have fewer van der Waals' forces ✓

> **ALLOW** Decane has stronger van der Waals' forces **OR** branched chains have weaker van der Waals' forces More intermolecular forces is **not** sufficient

2

1

(iv) Branched chains have more efficient combustionOR decane has less efficient combustion ✓

ALLOW branched chains are easier to burn OR easier to combust OR burn better OR more efficient fuel OR less likely to produce pre-ignition or knocking OR increases octane rating

ALLOW ORA for decane

Better fuel is **NOT** sufficient Burns more cleanly is **NOT** sufficient

[5]

1

2

3

2. (i) $\underline{34.0} \times 100$ **267.4** \checkmark

12.7% ✓

First mark for 267.4 **OR** (34.0 + 233.4) **OR** (169.3 + 98.1) at bottom of fraction with or without × 100 ALLOW from 2 sig figs up to calculator value ALLOW full marks for 13 **OR** 12.7 **OR** 12.72 **OR** 12.715 up to calculator value with no working out 12.71 scores one mark only **NO ECF** for this part from incorrect numbers in first expression

(ii) Any three from the following:

Oxygen comes from air \checkmark

IGNORE hydrogen comes from the air

No poisonous materials formed **OR** no poisonous materials involved \checkmark

IGNORE harmful

No waste products formed **OR** atom economy is 100% ✓ *ALLOW* higher atom economy

Anthraquinone is regenerated **OR** recycled **OR** used again **OR** Anthraquinone acts as a catalyst ✓

[5]

3. EITHER

Nucleophilic substitution \checkmark Example of nucleophilic substitution \checkmark Heterolytic fission \checkmark C–I curly arrow \checkmark Correct dipole on C— I bond \checkmark OH⁻ curly arrow from one lone pair on O of OH⁻ ion **OR** from minus sign on OH⁻ ion \checkmark

OR

Electrophilic addition \checkmark Example of electrophilic addition \checkmark Heterolytic fission \checkmark Curly arrow from C=C bond to Br—Br bond and Dipole and curly arrow associated with Br₂ \checkmark Correct carbocation ion \checkmark Curly arrow from one lone pair on Br⁻ ion **OR** from minus sign on Br⁻ ion \checkmark

> The example mark can be awarded as an example of the name of the mechanism given or if the name is wrong can be given as an example of a reasonably correct drawn mechanism

If **curly half arrows** drawn do not give a mark the first time used and then apply ECF

ALLOW mechanisms for other halogenoalkaes

ALLOW mechanisms for other halogens and hydrogen halides

ALLOW

Electrophilic substitution \checkmark Example of electrophilic substitution \checkmark Heterolytic fission \checkmark Curly arrow from benzene ring to the electrophile (i.e. NO₂⁺ OR Br⁺) \checkmark Correct intermediate \checkmark Curly arrow to show loss of hydrogen ion \checkmark

ALLOW

Nucleophilic addition \checkmark Example of nucleophilic addition \checkmark Heterolytic fission \checkmark Correct dipole on carbonyl group \checkmark Curly arrow from lone pair on H⁻ ion **OR** from minus sign on H⁻ to C=O carbon and breaking of C=O bond \checkmark Curly arrow from carbonyl oxygen to either H⁺ or H₂O \checkmark

[6]

4.

ÓН

Formula **must** be skeletal **AND** not include any symbol except for OH

[1]

5. (i) Same molecular formula but different structural formulae ✓
 ALLOW Same molecular formula but different arrangement of

atoms *OR* Same molecular formula but different structures *OR* Same molecular formula but different displayed formulae *DO NOT ALLOW* Same molecular formula but different spatial arrangement of atoms

(ii) $CH_3CH_2CH_2CH_2OH \text{ OR } (CH_3)_2CHCH_2OH \checkmark$

6. C_{*n*}H_{2n+2} ✓

[1]

7. skeletal formula of a branched isomer of C_8H_{18} \checkmark

skeletal formula of a cyclic hydrocarbon **OR** skeletal formula ofsubstituted arene of C_8H_{10} ALLOW any ring between C_3 and C_8 with 8 carbon atoms per
moleculemoleculeIGNORE wrong namesIf two correct structural or displayed formulae drawn award
one mark

[2]

1

8. (i) C₆H₁₀ ✓

(ii) $M_{\rm r}({\rm cyclohexanol}) = 100$ \checkmark

amount of cyclohexanol = $0.0765 \text{ mol } \checkmark$

percentage yield = 35.0% ✓ ALLOW full marks for correct answer with no or limited working out ALLOW ecf from wrong molar mass i.e. 7.65 ÷ molar mass ALLOW ecf from wrong amount in moles i.e. [0.0268 ÷ moles] × 100 ALLOW 35% ALLOW two marks for 0.35% If M_r of 82 is used then % yield will be 28.7 or 29 and this is worth two marks

3

1

[4]

9. (i) (sum of) the molecular masses of the desired product ÷ sum of molecular masses of all products × 100 ✓
 ALLOW (sum of) the molecular masses of the desired product ÷

product \div sum of molecular masses of all reactants $\times 100 \checkmark$

(ii) this preparation is addition **OR** has 100% atom economy **OR** there is only one product \checkmark

preparation from cyclohexanol has less than100% atom economy **OR** H₂O is produced as well **OR** calculated atom economy = 82% \checkmark *ALLOW* no by products formed

ALLOW other substances formed **OR** cyclohexene is not the only product

10. Structural isomer

compounds with the same molecular formula \checkmark but with different structural formulae \checkmark

Stereoisomer

compounds with the same structural formula \checkmark but with different arrangements in space \checkmark

Evidence of using M_r of 70 to calculate molecular formula of C_5H_{10} \checkmark

F and G are

0

Correct identification of the *E* and *Z* isomers \checkmark

H is

E/Z happens because double bonds restricts rotation ✓

different groups on each carbon of the double bond \checkmark

ALLOW same molecular formula ✓ but different structures√ Second marking point is **DEPENDENT** on first mark ALLOW compounds with the same structure Second marking point is **DEPENDENT** on first mark This is the QWC mark IGNORE wrong names of F, G and H ALLOW structural or displayed formulae for F, G and H e.g. *H* is CH₃CH₂CH₂CHCH₂ ALLOW identification using trans and cis and ALLOW this marking point as identification of another example of identifying E/Z or cis and trans if not done for F and G ALLOW one mark if no structures drawn but correct names given for F, G and H i.e E-pent-2-ene, Z-pent-2-ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks

[11]

11. C₁₃H₂₈

[1]

7

(ii) M_r butan-1-ol = 74(.0) (1)

moles = $4.28/74.0 = 0.0578 \mod (1)$

- (iii) $0.0578/0.0637 \times 100 = 90.7\%$ (1)
- **13.** structural isomerism:

structural isomers: same molecular formula, different structural formula (1) structural isomers of but-1-ene: but-2-ene (1) and methylpropene (1)

geometric isomerism C=C prevents rotation of the double bond (1) each C in the C=C double bond bonded to 2 different atoms or groups (1)

a clear statement that links non-rotation of the double bond to the idea of groups being trapped on one side of the double bond (1)

cis but-2-ene clearly identified (1) *trans* but-2-ene clearly identified (1)

[4]

2

14.	Bonding:	π -bond formed by overlap of (adjacent) p-orbitals/ π -bond labelled on diagram	1	
		diagram to show formation of the π -bond	1	
		H_{3C} H_{H} H_{3C} H_{H} H_{3C} H_{H} H_{3C} H_{1}		
		or		
		$\rightarrow \rightarrow $		
	Shape/bon	d angles:		
		tetrahedral around the CH ₃	1	
		bond angle = 109°28/ (109-110°)	1	
		trigonal planar around each C in the C=C	1	
		bond angle = 120° (118-122°)	1	
	Cis-trans			
		<i>cis</i> & <i>trans</i> correctly labelled eg but-2-ene require a double bond because it restricts rotation each C in the C=C double bond must be bonded to two different atoms or groups	1 1 1	
	QWC	Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers,	1	
		Secure	Ĩ	[10]
15.	(i) C ₆ H	10	1	
	(ii) C ₃ H ₂	(ii) $C_3H_5 / \text{ecf to } (i)$		
	(iii) M _r o	f cyclohexene = 82	1	

- (iii) M_r of cyclohexene = 82
 - % C = $(72/82) \times 100 = 88\%$

87.8% gets 1 mark

ecf to (i) and (ii) for both marks

Alternative calculation based on empirical formula:

Mass of empirical unit = 41, % $C = (36/41) \times 100 = 88\%$

[4]

16.	(i)	M_r of 2-methylpropan-1-ol = 74	1	
		moles = $4.44/74 = 0.06$	1	
	(ii)	moles = 5.48/137 = 0.04	1	
	(iii)	66.7%	1	
				[4]
17	C 4			
1/.	diffe	rent structure	1	
	but-1	-ene/ but-2-ene/ methylpropene / cyclobutane/ methylcyclopropane		
	(any	three or two with correct structures and names)	3	
	4 ma	rks for structural isomerism		
	Cis-t	rans /geometric isomerism	1	
	cis &	trans but-2-ene clearly identified	1	
	C=C	prevents rotation	1	
	each	C in the C=C double bond must be bonded to two different atoms or groups	1	
	4 ma	rks for cis-trans isomerism		
	QW0 any t	C: Well organised answer making use of correct terminology to include three from: structural, geometric, cis-trans, molecular formula, restricted, ion_stereoisomerism_stereoisomers_chain isomerism_positional isomerism		
	if all	isomers are correctly named	1	
				[9]

www.accesstuition.com

- (c) (i) same molecular formula , different structure/arrangement of atoms. (same formula, different structure.)
 - (ii)

(d)	(i)	addition, (not additional)	1	
	(ii)	poly(propene)/ polypropene/ polypro-1-ene, polypropylene	1	
	(iii)		1	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[15]

19. (a) (i)
$$C_4H_{10} \checkmark$$
 1

 (ii) $C_2H_5O \checkmark$
 1

 (iii) B and E \checkmark
 1

 (iv) A and F \checkmark
 1

(b)
$$(C_4H_9OH \rightarrow) C_4H_8 + H_2O \checkmark$$
 1

2

(any	unambiguous structure/formula is acceptable) $\checkmark \checkmark$	2
(ii)	2-methylbut-1-ene/2-methyl-1-butene 🗸	1
(iii)	\checkmark	1

 \checkmark

20.

[6]

[7]

1

1

21. (i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2-dimethylcyclopropane

[4]

	of the OH hydrogen bonded in a carboxyfic acid 🗸	1	
	of the OII hydrogon handed in a conhemilia acid	1	
	and the absence of a peak between $2500 - 3300 \text{ cm}^{-1}$ shows the absence		
	because absorption between $1680 - 1750 \text{ cm}^{-1}$ indicates a C=O \checkmark	1	
(ii)	The infra-red spectrum was of compound Y		
	1 mark for H_2O and 1 mark for 2[O]		
(i)	$C_{10}H_{18}O + 2[O] \rightarrow C_{10}H_{16}O_2 + H_2O \checkmark \checkmark$	2	
	(i) (ii)	 (i) C₁₀H₁₈O + 2[O] → C₁₀H₁₆O₂ + H₂O ✓✓ 1 mark for H₂O and 1 mark for 2[O] (ii) The infra-red spectrum was of compound Y because absorption between 1680 - 1750 cm⁻¹ indicates a C=O ✓ and the absence of a peak between 2500 - 3300 cm⁻¹ shows the absence of the OH budrogen handed in a carboxylic acid ✓ 	 (i) C₁₀H₁₈O + 2[O] → C₁₀H₁₆O₂ + H₂O ✓✓ 2 1 mark for H₂O and 1 mark for 2[O] (ii) The infra-red spectrum was of compound Y because absorption between 1680 - 1750 cm⁻¹ indicates a C=O ✓ 1 and the absence of a peak between 2500 - 3300 cm⁻¹ shows the absence of the OU budge can be in a carbourdie coid ✓