1. (i) $120-130(1)$
(ii) boiling point increases with increase in $\mathrm{Mr} /$ molecular formula/number of carbon atoms/chain length (1) more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces (1)
2. $\mathrm{C}_{13} \mathrm{H}_{28}$
3. $\mathrm{C}_{9} \mathrm{H}_{20} \rightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}$ (1)
4. (i) Any branched isomer of heptane with correct name, e.g.

2-methylhexane (1)
(ii)

5. (i) species with an unpaired electron (1)
(ii) uv (light)/high temperature/min of $400^{\circ} \mathrm{C} /$ sunlight (1)
(iii) homolytic (fission) (1)
(iv) $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \bullet(\mathbf{1}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{HCl}$ (1)
$\mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2} \mathbf{(1)} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \bullet(\mathbf{1})$
6. (i) $8.72 / 136.9=0.0637 \mathrm{~mol}(1) \quad 1$
(ii) $\quad M_{\mathrm{r}}$ butan-1-ol $=74(.0)(1)$
moles $=4.28 / 74.0=0.0578 \mathrm{~mol}(\mathbf{1}) \quad 2$
(iii) $0.0578 / 0.0637 \times 100=90.7 \%(\mathbf{1}) 1$

7. Availability of starting materials:

availability
sugar is renewable because it can be grown (1)
ethane is finite because it is obtained by processing of crude oil (1)
energy:
fermentation: energy is required for distillation/ hydration: energy is required to generate steam (1)
atom economy and waste products:
atom economy for fermentation < atom economy hydration (1) In fermentation, CO_{2} is produced in addition to ethanol/ethanol is not the only product (1)
In hydration, ethanol is the only product/hydration is an addition reaction (1)
Atom economy of fermentation could be increased by finding a use $\mathrm{CO}_{2}(1)$

Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy (1) 7 max
8. (i) $M_{\mathrm{r}} \mathrm{C}_{7} \mathrm{H}_{16}=100$ (1) amount $=2000 / 100=20 \mathrm{~mol}$ (1) 2
(ii) energy saved $=20 \times 4817=9634 \mathrm{~kJ}(\mathbf{1}) \quad 1$
(iii) moles $\mathrm{CO}_{2}=7 \times 20=140 \mathrm{~mol}$ (1)
decrease in $\mathrm{CO}_{2}=140 \times 24=3360 \mathrm{dm}^{3} \mathbf{(1)} 2$
9. structural isomerism:
structural isomers: same molecular formula, different structural formula (1)
structural isomers of but-1-ene: but-2-ene (1) and methylpropene (1)
geometric isomerism
$\mathrm{C}=\mathrm{C}$ prevents rotation of the double bond (1)
each C in the $\mathrm{C}=\mathrm{C}$ double bond bonded to 2 different atoms or groups (1)

* a clear statement that links non-rotation of the double bond to the idea of groups being trapped on one side of the double bond (1)
cis but-2-ene clearly identified (1)
trans but-2-ene clearly identified (1)

10. 1st bullet
product: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$ (1)
equation: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{2} \mathrm{Br}$ (1)
products: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ (1)
(or statement that 2-bromo- is formed)
equation: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBrCH}_{3}$ (1)
(i.e. for one product)
products: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ and CH 3 CH 2 CH 2 CH 2 OH (1)
(or statement that 2-ol is formed)
equation: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHOHCH}_{3}$ (1)
(i.e. for one product)

2nd bullet

1 mark for skeleton with two repeat units (1)
1 mark for correct groups on side chains (1)

3rd bullet

two (1) (1) from
energy from incineration
development of biodegradable polymers
cracking of waste polymers
2
11. separation by (differences in) boiling point
$\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{C}_{3} \mathrm{H}_{6}$
(i) Any of

(ii) $\mathrm{C}_{7} \mathrm{H}_{16} \rightarrow \mathrm{C}_{7} \mathrm{H}_{14}+\mathrm{H}_{2}$
(or by structural formula)
(i) 2,2-dimethylpentane
(ii) 3-methylhexane, 3,3 dimethylpentane or (3)-ethylpentane in any unambiguous form.
(iii) 2,2,3-trimethylbutane 1
(iv) if branched, difficult to pack/less surface interaction/less points of contact 1 less van der Waals' forces/ less intermolecular bonds/less energy needed to boil 1
12. (a) (i) phosphoric acid $/ \mathrm{H}^{+} /$sulphuric acid
(ii) lone/electron pair of electrons acceptor 1
(b) (i)

Step $1 \quad$ curly arrow from π-bond to $\mathrm{H}^{+} \quad 1$
Step 2 curly arrow from lone pair on the $\mathrm{O}^{\delta-}$ to $\mathrm{C}+\quad 1$
Step 3 curly arrow from O — H bond to $\mathrm{O}+\quad 1$
(ii) catalyst ... no marks because it is not consumed/used up in the reaction/owtte
13. (a) 3-chloro(-2-)methylprop-1-ene/1-chloro(-2-)methylprop-2-ene 1
(b)

Backbone of 4 carbons and a reasonable attempt gets 1 mark.
14. (a) (i) uv/sunlight/high temperature (range $400-700^{\circ} \mathrm{C}$) 1
(ii) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet \quad 1$
$\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl} \bullet \rightarrow \mathrm{HCl}+\bullet \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet \quad 1$
$\bullet \mathrm{C}_{4} \mathrm{H}_{9} / \mathrm{C}_{4} \mathrm{H}_{9} \bullet+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Cl}+\mathrm{Cl} \bullet \quad 1$
(iii) any two free radicals from (a) (ii) 1
(iv) homolytic (fission) 1
(b) (i) 2,3-dichlorobutane 1
(ii) 1

(iii) any dichlorobutane except 2,3-dichlorobutane. 1
15. Bonding: π-bond formed by overlap of (adjacent) p-orbitals $/ \pi$-bond labelled on diagram
diagram to show formation of the π-bond

or

Shape/bond angles:

tetrahedral around the $\mathrm{CH}_{3} \quad 1$
bond angle $=109^{\circ} 28 /\left(109-110^{\circ}\right) \quad 1$
trigonal planar around each C in the $\mathrm{C}=\mathrm{C} \quad 1$
bond angle $=120^{\circ}\left(118-122^{\circ}\right) \quad 1$

Cis-trans

cis \& trans correctly labelled eg but-2-ene 1
require a double bond because it restricts rotation 1
each C in the $\mathrm{C}=\mathrm{C}$ double bond must be bonded to two different atoms or groups
QWC Allow mark for well constructed answer and use of three terms like: orbital, tetrahedral, trigonal, planar, rotation, spatial, stereoisomers, geometric
16. (i) (free radical) substitution 1
(ii) 1-bromohexane, 2-bromohexane and 3-bromohexane 3
17. (a)

curly $\quad 1$
dipoles shown correctly on the $\mathrm{Br}-\mathrm{Br}$ and curly arrow from the $\mathrm{Br}-\mathrm{Br} \quad 1$
bond towards the Br^{δ}
correct intermediate shown 1
curly arrow from the lone pair or the negative charge on the Br^{-}to the 1
C+
(b) (i) Hs are diagonal to each other in the trans/
difference clearly shown in a diagram
(ii) (the product is saturated hence) there is no restricted rotation/single
bonds allow rotation/because $\mathrm{C}=\mathrm{C}$ prevents rotation
18. Recognises that either a catalyst or high temperature (heat is not
sufficient) is required

cracking reforming compound	suitable balanced equation	1
suitable balanced equation with H_{2} equation or statement indicating formation of a ring/cyclic	1	
(balanced equation showing formation of a ring scores both marks)	1	

(balanced equation showing formation of a ring scores both marks) 1
$\begin{array}{ll}\text { isomerisation } & \text { suitable balanced equation } \\ \text { The processed products are: } & \end{array}$

- used in fuels/used in petrol
- better /more efficient fuels/increase octane number/rating
- alkenes (from cracking) produce polymers/alcohols
- H_{2} used for Haber process/fuels/hydrogenation of oils

QWC SPAG - look for two complete sentence that present a 1
coherent argument
19. (i) $\mathrm{C}_{6} \mathrm{H}_{10} \quad 1$
(ii) $\mathrm{C}_{3} \mathrm{H}_{5} /$ ecf to (i) $\quad 1$
(iii) M_{r} of cyclohexene $=82 \quad 1$
$\% \mathrm{C}=(72 / 82) \times 100=88 \% \quad 1$
87.8\% gets 1 mark
ecf to (i) and (ii) for both marks
Alternative calculation based on empirical formula:
Mass of empirical unit $=41, \% C=(36 / 41) \times 100=88 \%$
20. H_{2} 1
$\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd}$ (catalyst) 1
[2]
21. (a) (i)

(ii) $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{Al}_{2} \mathrm{O}_{3} /\left(\right.$ hot) pumice $/ \mathrm{H}_{3} \mathrm{PO}_{4}$
$\left(\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\right.$ or dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ loses the mark)
(iii) 1

$$
\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH} / \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{10}+\mathrm{H}_{2} \mathrm{O}
$$

(b) (i)

22. (a) (i) compound/molecule containing hydrogen and carbon only 1
(ii) $\mathrm{C}_{10} \mathrm{H}_{22} \quad 1$
(iii) $\mathrm{C}_{5} \mathrm{H}_{11}$ \{ecf from (ii)\} 1
(b) (i) (a particle that) contains/has a single/unpaired electron 1
(ii) UV (light) /sunlight/high temp 1
(iii) homolytic (fission)/ homolysis 1
(iv) $\mathrm{C}_{12} \mathrm{H}_{26}+\mathrm{Cl} \bullet \rightarrow \bullet \mathrm{C}_{12} \mathrm{H}_{25}+\mathrm{HCl} \quad 1$
(the dot for the free radical does not have to be on the C)

- $\mathrm{C}_{12} \mathrm{H}_{25}+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Cl}+\mathrm{Cl} \bullet$
(v) six 1
(c) (i) $\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{4}+1 \mathrm{C}_{8} \mathrm{H}_{18} \quad 2$
(1 mark for correct formula of octane or ethene)
(ii) octane/ ecf from (c) (i)
(d) (i)

23. (a) (i) alkene 1
bromine 1
decolourises 1
(ii) 3-methylhex-2-en-1-ol/ 1-hydroxy-3-methylhex-2-ene 1
24. margarine

Ni catalyst 1
hydrogen/ hydrogenated 1
unsaturated vegetable oil/fat 1
poly(propene)
equation

two repeat units

(Ziegler) catalyst / high temp/heat/use of an initiator

Problems with disposal

non-biodegradable/don’t decompose/not broken down by bacteria etc 1
when burnt produces toxic fumes 1

Future methods of disposal

recycling (to produce new polymers) 1
incineration for energy (production) 1
cracking/owtte (to produce useful organic molecules)
use gas scrubbers to reduce toxic fumes

$$
\begin{aligned}
& \text { any two } \\
& \max =9
\end{aligned}
$$

QWC
Answer is well organised/structure and using at least three of:
catalyst, hydrogenation, addition polymerisation, Ziegler, incineration, feedstock, recycling, non-biodegradable, initiator, monomer, unsaturated.
in the correct context.
25. (a) octane, $400+/-5$ 1
hexadecane. $545+/-5 \quad 1$
if ${ }^{\circ} \mathrm{C}$ penalise once.
(b) fractional distillation
(c) (i)

(ii) 2-methylpentane 1
(iii) \mathbf{C}, \mathbf{B} and \mathbf{A} 1
(iv) the more branching/the shorter the chain... the lower the boiling point/ less energy needed to separate the molecules
long chain have greater surface area/surface interactions/more VdW forces or converse argument about short/branched chains.
(d) (i)

1
(ii) $\mathrm{C}_{6} \mathrm{H}_{14} \rightarrow \mathrm{C}=\mathrm{H}_{12}+\mathrm{H}_{2}$
(iii) better fuels/more volatile/lower boiling point/reduces knocking/ increases octane rating/used as (petrol) additives
$\begin{array}{llr}\text { (e) } & M_{r} \text { of }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}=74 & 1 \\ & \% \text { oxygen }=(16 / 74) \times 100=21.6 \% & 1 \\ \text { (ii) } & \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+6 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O} & \\ & 1 \text { mark for } \mathrm{CO}_{2} \text { and } \mathrm{H}_{2} \mathrm{O} \text { only } & 2\end{array}$
26. (a) (i) $\mathrm{C}_{5} \mathrm{H}_{8} \quad 1$
(ii) $\mathrm{C}_{5} \mathrm{H}_{8} \quad 1$
(b) (i) $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Pd} \quad 1$
(ii) 1 mark for $\mathrm{C}_{5} \mathrm{H}_{12} \quad 1$

1 mark for correct balancing 1
(iii)

27. (i) electron/lone pair acceptor 1
(ii)

curly arrow from π-bond to $\mathrm{Br}^{\delta+}$
Dipoles on the $\mathrm{Br}-\mathrm{Br}$ bond and
curly arrow from $\mathrm{Br}-\mathrm{Br}$ bond to $\left.\mathrm{Br}{ }^{\delta-}\right\}$
Curly arrow from Br^{-}to C^{+}
28. (i) $\quad M_{r}$ of 2-methylpropan-1-ol = 74 1
moles $=4.44 / 74=0.06$
(ii) moles $=5.48 / 137=0.04$ 1
(iii) 66.7% 1
29. (i) correctly shows three repeat units with 'end bonds' 1
correctly identifies the repeat unit

(ii) harmful/toxic fumes are produced
(iii) recycle/remove HCl by using gas scrubbers or wtte/crack polymers/used a feedstock/ source of fuel (in an incinerator)/developing biodegradable alternatives.
30. (i) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet$
(ii) uv (light)/high temperature/min of $400 \mathrm{C} /$ sunlight 1
(iii) $\mathrm{Cl} \bullet+\mathrm{C}_{6} \mathrm{H}_{12} \quad \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{HCl}$
$\mathrm{C}_{6} \mathrm{H}_{11} \bullet+\mathrm{Cl}_{2} \quad \rightarrow \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{Cl}+\mathrm{Cl} \bullet \quad 1$
(iv) react with each other/suitable equation
solvent \mathbf{W} = water/aqueous/aqueous ethanol 1
solvent \mathbf{X} = ethanol/alcohol 1
31. Structural/chain/positional isomers have the same molecular formula, different structure

1
but-1-ene/ but-2-ene/ methylpropene / cyclobutane/ methylcyclopropane
(any three or two with correct structures and names)
4 marks for structural isomerism
Cis-trans /geometric isomerism 1
cis \& trans but-2-ene clearly identified $\quad 1$
$\mathrm{C}=\mathrm{C}$ prevents rotation 1
each C in the $C=C$ double bond must be bonded to two different atoms or groups 1
4 marks for cis-trans isomerism
QWC: Well organised answer making use of correct terminology to include any three from: structural, geometric, cis-trans, molecular formula, restricted, rotation, stereoisomerism, stereoisomers, chain isomerism, positional isomerism, if all isomers are correctly named
32. (a) (i) $24.7 / 12: 2.1 / 1: 73.2 / 35.5$
$2.06: 2.1: 2.06$
CHCl 1
(ii) $(\mathrm{CHCl}=12+1+35.5=) 48.5 \quad 1$
$48.5 \times 3=145.5 \quad 1$
(b) (i) Any two from

2

(ii) 1, 2,3-trichloropropene
(trichloropropene scores 1 mark \checkmark)
3 marking points:

- correct numbers 1, 2,3
- trichloro
- propene/prop-1-ene
any two gets 1 mark
(c) (i)

1 mark if backbone contains 4 carbons with 'endbonds' and a reasonable attempt has been made e.g used the wrong isomer.... max = 1 mark
(ii) non-biodegradable 1
toxic fumes evolved when burnt 1

HCl or $\mathrm{Cl} \bullet$ or chlorinated organic compounds such as COCl_{2} also evolved when burnt
(ii)

$$
\text { curly arrow from } \mathrm{C}=\mathrm{C} \text { bond to bromine } 1
$$

dipoles on Br_{2} or curly arrow to show movement of bonded pair of electrons 1
intermediate carbonium ion/carbocation 1
curly arrow from lone pair on the Br - ion to carbonium ion ($\mathrm{Br}^{\delta-}$ loses 1 mark) 1
34. identifies the three process as cracking, reforming, isomerisation 1
recognises the need for high temperature or a catalyst 1
equation for cracking 1
equation for isomerisation 1
state that reforming converts chains into rings/cyclic compounds 1
equation for reforming (balanced with H_{2} could score two marks) 1
oil is finite/non-renewable 1
ethanol is renewable/sustainable 1
from plants/crops/sugar cane/sugar beet/glucose/sugar/ fermentation 1
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 1$
QWC

- organise relevant information clearly and coherently, using specialist vocabulary when appropriate (minimum of 4 from cracking/ isomerisation/ reforming/ renewable/ feedstock/ finite/fermentation/non-renewable/sustainable/zeolite/bimetallic catayst/ etc)
- reasonable spelling, punctuation and grammar throughout 1

35. (a) $\mathrm{C}_{6} \mathrm{H}_{14}$
(b) (i) boiling point increases with increase in $\mathrm{M}_{\mathrm{R}} /$ molecular formula $/ \mathrm{N}^{\circ}$ of carbon atoms/chain length
(ii) more intermolecular forces/electrons/surface area/ surface interactions/van der Waal forces 1
(iii) $120-130{ }^{\circ} \mathrm{C} \quad 1$
36. (i) $\mathrm{C}_{9} \mathrm{H}_{20} \longrightarrow \mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4} \longrightarrow 1$
(ii) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \longrightarrow 1$ temperature $>100^{\circ} \mathrm{C} /$ steam 1 phosphoric acid (catalyst) 1
37. (a) (i) 1

(ii) $85-98{ }^{\circ} \mathrm{C} \quad 1$
(b)

(c) more efficient fuel/better fuel/ higher octane number/reduces
knocking/more volatile/lower boiling points/burn better/burn more easily/quicker
38. (a) (i) reaction 1
(ii) reaction 4 1
(iii) reaction 3
(b) (i) lone pair/electron pair donor

Correct dipole 1
Curly arrow from the O in the OH^{-}to C in the CH_{2}
Curly arrow to show movement of bonded pair in the $\mathrm{C}-\mathrm{Cl}$ bond
Cl^{-}as a product
(c) (i) same molecular formula , different structure/arrangement of atoms.
(same formula, different structure.)
(ii)

(d) (i) addition, (not additional)
(ii) poly(propene)/ polypropene/ polypro-1-ene, polypropylene 1
(iii)

39. (i) decolourises/not clear/not discolours
(ii)

curly arrow from $\mathrm{C}=\mathrm{C}$ to $\mathrm{Br}^{\delta+} \quad 1$
dipole on $\mathrm{Br}-\mathrm{Br}$ and curly arrow showing movement of bonded pair of electrons
correct intermediate/carbonium ion/carbocation and curly arrow
from Br^{-}to $\mathrm{C}+$
1, 2-dibromopropane as product 1
40. $\mathrm{CH}_{3} \mathrm{CBr}_{2} \mathrm{CH}_{3} \quad 1$
$\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br} \quad 1$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHBr}_{2} \quad 1$
$\left(\mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{Br}\right.$ has a chiral centre, hence optical isomers of
1, 2-dibromopropane are acceptable but must be drawn with 'wedge-shape' bonds and be non-superimposable mirror images)
41. (i) unsaturated contains a double/multiple/ π bond $\checkmark \quad 1$
hydrocarbon contains hydrogen and carbon only. $\checkmark \quad 1$
(ii) angle a $109-110^{\circ} \checkmark \quad 1$ angle b $117-120^{\circ} \checkmark \quad 1$
(iii)

Diagram to show a minimum of 2 carbons, each with a σ-bond and p-orbitals
Overlap of adjacent p-orbitals (in words or in diagram) 2
42. (i) electrophile: lone pair (of electrons) acceptor.
(ii)

essential mark intermediate carbocation/carbonium ion, accept primary
/"triangular"/ \checkmark
essential mark product
curly arrow from double bond to Br_{2}
curly arrow showing movement of electrons in the $\mathrm{Br}-\mathrm{Br}$ bond or the dipole in the $\mathrm{Br}-\mathrm{Br} \checkmark$
curly arrow from lone pair of electrons in Br^{-}to intermediate \checkmark mark any errors first

$$
5 \text { max }
$$

43. (i) Addition (not additional) \checkmark
(ii) \checkmark
(iii)

(iv) Poly(but-1-ene) $\checkmark \quad 1$
44. (a) (i) alkene $\checkmark \quad 1$
alcohol/hydroxy/hydroxyl $\checkmark \quad 1$
(b) (i) I = alkene \& II = alcohol... both are needed $\checkmark \quad 1$
(ii) decolourised / colourless $\checkmark \quad 1$
(iii) \checkmark 1

(iv) \mathbf{X} as shown below $\checkmark \quad 1$

(c) (i) $\mathrm{Ni} / \mathrm{Pt} / \mathrm{Rh} / \mathrm{Pd} \checkmark \quad 1$
(ii) compound B is $\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark \quad 1$
(iii) $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{10} \mathrm{H}_{22} \mathrm{O} \checkmark \quad 1$
45. (a) (i) $\mathrm{C}_{4} \mathrm{H}_{10} \checkmark$
(ii) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O} \checkmark \quad 1$
(iii) B and E $\checkmark \quad 1$
(iv) A and F $\checkmark \quad 1$
(b) $\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow\right) \mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \checkmark \quad 1$
(c) any unambiguous formula:

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

$\mathrm{CH}_{2} \mathrm{CHCHCH}_{2}$

buta-1,3-diene \checkmark
name ecf to the structure only if structure above has formula $C_{4} H_{6}$
46.

1 mark is available if the backbone consists of 4 C atoms and a reasonable attempt has been made $\checkmark \checkmark$
47. (a) Same molecular formula, different structure /displayed formula/ arrangement of atoms/bonds
(Same formula, different structure/displayed formula/arrangement of atoms
(b) (i) 3-methylbut-1-ene and 2-methylbut-2-ene (any unambiguous structure/formula is acceptable) $\checkmark \checkmark \quad 2$
(ii) 2-methylbut-1-ene/2-methyl-1-butene $\checkmark \quad 1$
(iii) $\checkmark \quad 1$

48. (i) any two from methylcyclobutane, 1,1-dimethylcyclopropane and 1,2-dimethylcyclopropane

allow

$\checkmark \checkmark$
(ii) cyclopentane $\checkmark \quad 1$
(iii) 1

49. (i) homolytic \checkmark 1
(ii) $\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl} \bullet$ (need \bullet on the $\mathrm{Cl} . .$. penalise only once in the 3 equations) $\checkmark \quad 1$
(iii) I $\quad\left(\mathrm{C}_{5} \mathrm{H}_{10}\right)+\underline{\mathrm{Cl} \bullet} \rightarrow\left({ }^{\bullet} \mathrm{C}_{5} \mathrm{H}_{9}\right)+\underline{\mathrm{HCl}}$

II $\quad\left(\bullet \mathrm{C}_{5} \mathrm{H}_{9}\right)+\underline{\mathrm{Cl}_{2}} \rightarrow \underline{\mathrm{C}}_{\underline{5}} \underline{\mathrm{H}_{9}} \underline{\mathrm{Cl}}+\underline{\mathrm{Cl} \bullet} \checkmark$ 1
50. (a)
(i) Alkene/C=C \checkmark

Alcohol/ROH/hydroxy/hydroxyl/OH (not OH^{-}or hydroxide) $\checkmark \quad 1$
(ii) One of the C in both $\mathrm{C}=\mathrm{C}$ is joined to two atoms or groups that are the same
(b) Observation decolourisation $\left(\right.$ of $\left.\mathrm{Br}_{2}\right) \checkmark \quad 1$

Molecular formula

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{4} \checkmark \checkmark \\
& \quad \mathrm{C}_{10} \mathrm{H}_{18} \mathrm{OBr}_{2} \text { gets } 1 \text { mark }
\end{aligned}
$$

(c) reagent
$\mathrm{CH}_{3} \mathrm{COOH} \checkmark$
$\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{HCl}(\mathrm{aq})$ or dilute loses the mark
1
(d) (i) $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+2[\mathrm{O}] \rightarrow \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \checkmark \checkmark$

1 mark for $\mathrm{H}_{2} \mathrm{O}$ and 1 mark for 2[O]
(ii) The infra-red spectrum was of compound \mathbf{Y} because absorption between $1680-1750 \mathrm{~cm}^{-1}$ indicates a C=O $\checkmark \quad 1$ and the absence of a peak between $2500-3300 \mathrm{~cm}^{-1}$ shows the absence of the OH hydrogen bonded in a carboxylic acid $\checkmark \quad 1$
$\begin{array}{ll}\text { 51. Variation in boiling points. } \quad \text { (max }=4 \text { marks) } & \\ \text { As chain length increases, boiling point increases } \checkmark & 1\end{array}$ due to increased number of electrons/ surface area/ more van der Waals forces / intermolecular forces/ more surface interactions \checkmark
As branching increases, boiling point decreases $\checkmark \quad 1$
straight chains can pack closer together/ straight chains have greater surface area/ $\checkmark 1$ more van der Waals forces /more intermolecular forces/ more surface interactions
Isomerisation

(max = 4 marks)	
(produces) branched chain alkanes \checkmark	1
equation to illustrate any isomerisation (of octane) \checkmark	1

 into any one of

or any other branched isomer of octane

Branched chains are better/more efficient fuels/used as additives
because they are more volatile/easier to ignite/burn more easily/higher octane number(rating)/lower boiling points/reduces knocking (pinking)

QWC mark

- use of suitable chemical terms such as van der Waals, intermolecular forces/ intermolecular bonds/volatile/ knocking/ pinking/pre-ignition
- reasonable spelling, punctuation and grammar throughout $\checkmark \quad 1$

