Question			Answer	Mark	Guidance
1	(a)		monomers join/bond/add/react/form polymer/form chain AND another product/small molecule e.g. $\mathrm{H}_{2} \mathrm{O} / \mathrm{HCl} \checkmark$ QWC must spell AND use 'monomer(s)' correctly throughout	1	IGNORE 'two' when referring to monomers, ie (two) monomers
	(b)	(i)	 ester link \checkmark Note: Any ester link shown must be correct rest of the structure \checkmark	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW benzene ring for $\mathrm{C}_{6} \mathrm{H}_{5}$ 'End bonds' MUST be shown (do not have to be dotted) ALLOW one or more repeat units but has to have a whole number of repeat units (ie does not have to be two) For ester, DO NOT ALLOW ALLOW structure with no O at left end and COO at right end IGNORE brackets IGNORE n
		(ii)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW one or more repeat units but has to have a whole number of repeat units (ie does not have to be two) 'End bonds' MUST be shown (do not have to be dotted) IGNORE brackets IGNORE n

Question		Answer	Mark	Guidance
(c)		compound C compound \mathbf{D} and compound \mathbf{E}	3	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ ALLOW D and E by ECF from an incorrect structure of C provided that \mathbf{C} contains a double bond and molecular formulae of \mathbf{D} and E is $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}$ with $\mathrm{H}_{2} \mathrm{O}$ added across double bond
(d)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) e.g. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$ DO NOT ALLOW -HO IGNORE working (ie other structures) provided correct structure of propan-2-ol is shown IGNORE name (even if wrong)

Question		er	Mark	Guidance
(d)	(ii)	 OR acid anhydride:	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) OR (2-)methylpropanoic acid DO NOT ALLOW incorrect name (will CON a correct structure) ALLOW acyl chloride: $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCl}$ IGNORE working provided correct structure of propan-2-ol is shown
	(iii)	Hydrogen bonds form with water \checkmark Note: Can be shown in diagram as dashed line, ie ---- (no label required) DO NOT CON 'hydrogen bond' from an incorrect hydrogen bond in diagram Mandelic acid forms more hydrogen bonds (with water) ORA Mandelic acid has an extra OH OR 2 OH groups OR has a COOH group \checkmark ORA	3	ANNOTATIONS MUST BE USED ALLOW a diagram showing hydrogen bonds with water, dipole and lone pair are not required ALLOW a hydrogen bond to $\mathrm{C}=\mathrm{O}$, ie $\mathrm{C}=\mathrm{O}--\mathrm{H}-\mathrm{O}$ IGNORE bond angles Diagram does not need to show all of mandelic acid (IGNORE if wrong) ALLOW any comparison of numbers of hydrogen bonds provided that mandelic acid has more hydrogen bonds DO NOT ALLOW 'No -OH groups in ester (as there are)' DO NOT ALLOW reference to $-\mathrm{OH}^{-}$/ hydroxide IGNORE reference to carbon chain and van der Waals' forces Note: If a response compares Ester 1 with Ester 2 rather than with mandelic acid, maximum of 2 marks: 1st mark hydrogen bonds 2nd mark Ester 2 has more Os/oxygens OR Ester 2 forms more hydrogen bonds

Question		Answer	Mark	Guidance
(d)	(iv)	To test for (adverse) side effects OR to test toxicity OR to test for irritation \checkmark	$\mathbf{1}$	ALLOW a stated adverse side effect, eg allergy, carcinogenic, etc IGNORE references to optical isomers, chirality, etc
IGNORE vague statements such as harmful to skin,				
IGNGerous to skin, corrosive to skin, reacts with skin				
dang				
ALLOW company liable to litigation/damages				

2
Question

Questi		Expected Answers	Marks	Additional Guidance
b	i	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	1	ALLOW any order of elements ALLOW $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4} \rightarrow \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$ or $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{4}=\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$
	ii	Penalise incorrect bond linkage in $\mathbf{2 b}$ (ii) only. Do not penalise elsewhere on the paper	2	ALLOW $\mathrm{COOH} / \mathrm{CO}_{2} \mathrm{H}$ ALLOW ALLOW HO($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$
c	i		2	ALLOW any of the following for 1 mark ${ }^{+} \mathrm{Na}$ or or DO NOT ALLOW any other response
	ii	(PGA is) (bio)degradable OR photodegradable OR hydrolysed (but hydrocarbon based polymers are nonbiodegradable) One of (bio)degradable OR photodegradable OR hydrolysed must be spelt correctly - if one spelt correctly and another incorrectly spelt - ALLOW mark	1	ALLOW broken down by bacteria (must be spelt correctly) ALLOW degrade as alternative to degradable ALLOW undergoes hydrolysis as alternative to hydrolysed IGNORE any additional information if the additional information is correct e.g. biodegradable and doesn't produce toxic gases DO NOT ALLOW any additional information if the additional information is incorrect e.g. biodegradable and can be recycled
		Total	9	

Question			Expected Answers		Marks	Additional Guidance
4	a		Alternative approaches			
			Tollens’ test AND ‘silver precipitate/mirror' \checkmark is the aldehyde \checkmark react with 2,4-DNP(H) and 'orange precipitate' \checkmark must be the ketone 2,4-DNP(H) AND orange precipitate \checkmark is either aldehyde OR ketone ALLOW carbonyl OR C=O Tollens' test \& 'silver ppt/mirror' \checkmark is the aldehyde \checkmark	Tollens' test AND ‘silver precipitate/mirror' \checkmark is the aldehyde \checkmark react with carbonate/ hydrogencarbonate/ $\mathrm{Na} / \mathrm{Mg}$ and 'fizzes/ bubbles/ effervesces/ gas evolved \checkmark must be the (carboxylic) acid \checkmark 2,4-DNP(H) and no orange precipitate \checkmark is the (carboxylic) acid \checkmark Tollens' test \& 'silver ppt/mirror' \checkmark is the aldehyde \checkmark	4	ALLOW ammoniacal $\mathrm{AgNO}_{3} / \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)_{2} / \mathrm{Ag}^{+}\left(\mathrm{NH}_{3}\right)$ ALLOW acidified dichromate OR Fehlings as an alternative to Tollens observation 'turn green' OR 'red precipitate' respectively ALLOW acidified manganagate(VII) and observation as either brown precipitate/decolourised/pale pink ALLOW Brady's (reagent) ALLOW orange/red/yellow for colour of the 2,4-DNP(H) precipitate ALLOW solid/crystals in place of precipitate IGNORE any reference to melting points ALLOW PCl_{5} as a test for the acid - observation would be 'white fumes (of HCl)' ALLOW detection of (carboxylic) acid by reacting with an alcohol to make an ester but no mark for the observation. DO NOT ALLOW detection of (carboxylic) acid by pH or indicator Please annotate, use ticks to show where marks are awarded
	b		Peak in range 2500-3300 shows O-H \checkmark [need wavenumber (or range)	cm^{-1}) or (around) 3000 e) and $\mathrm{O}-\mathrm{H}$ bond]	1	DO NOT ALLOW single peak quoted within range 2500-3300 other than $3000\left(\mathrm{~cm}^{-1}\right)$ for OH DO NOT ALLOWrange $3200-3550\left(\mathrm{~cm}^{-1}\right)$ IGNORE any reference to $\mathrm{C}-\mathrm{O}$ or $\mathrm{C}=\mathrm{O}$

Question		Expected Answers	Marks	Additional Guidance
c				ALLOW 3-methylbutanal, any correct unambiguous structure ALLOW two marks for correct aldehyde with no explanation ALLOW doublet/peak at 0.9 ppm due to $\mathrm{R}-\mathrm{CH}$ ALLOW the splitting shows adjacent to $\mathrm{CH} /$ environment that contains 1 H/proton ALLOW $6 \mathrm{Hs} /$ protons in same environment DO NOT ALLOW 6 Hs in same environment next to CHO e.g. would score two marks if the doublet and the peak areas were correctly explained
d	I	 ketone 3	1	ALLOW displayed/skeletal formulae
	ii	There are 4 (different C) environments \checkmark (therefore) it is ketone $2 \mathbf{I}$ (C responsible for peak at $\delta=210 \mathrm{ppm}$) is C=O/carbonyl carbon	3	ALLOW 2 Cs are in same environment/equivalent ALLOW 3-methylbutan(-2-)one/ any correct unambiguous structure ALLOW 2-methylbutan-3-one
		Total	12	

Question			Expected Answers	Marks	Additional Guidance
5	a	i	The time (from the injection of the sample) for the component to leave the column \checkmark	1	ALLOW time from injection to detection ALLOW time spent in column ALLOW time taken to reach detector
		ii	They have similar retention times \checkmark	1	ALLOW both are esters therefore partition/adsorption/retention times will be very similar ALLOW ECF if they describe R_{f} values in part $\mathbf{a}(\mathbf{i})$ ALLOW same retention times
		iii	Butylbutanoate \checkmark	1	ALLOW butyl butanoate ALLOW but-1-yl butanoate DO NOT ALLOW butanyl butanoate
	b	i		2	ALLOW any correct unambiguous structure/ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHCHCHCHCOOCH} \mathrm{CH}_{3}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CHCHCHCHCOOC} 2 \mathrm{H}_{5}$ $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}(\mathrm{CH})_{4} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ DO NOT ALLOW $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CHCHCHCHCOOCH} \mathrm{CH}_{3}$ etc ALLOW CO_{2} for ester ALLOW 1 mark for correct 2,4-decadiene structure e. ALLOW 1 mark for correct ethyl ... oate structure e.

Question

Question			er	Mark	Guidance
6	(a)	(i)	One mark is for positive carbonyl test (Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate One mark is for negative aldehyde test EITHER (Add) Tollens' reagent/Tollens' test AND no change OR no reaction OR no silver (mirror) OR (Add) $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND no change OR no reaction OR no green colour \checkmark	2	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW $\mathrm{AgNO}_{3} / \mathrm{NH}_{3}$ (Formulae must be correct) OR ammoniacal silver nitrate ALLOW Fehling's solution OR Benedict's solution AND no (brick-red) precipitate ALLOW any response that implies that nothing happens ie no change OR no reaction OR no silver (mirror) ALLOW 'the aldehyde/pentanal gives a silver mirror' ALLOW H^{+}AND $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ (Formulae must be correct) ALLOW any response that implies that nothing happens IGNORE responses using NaBH_{4} (as no observations)
		(ii)	1st mark Take melting point of orange crystals/derivative/product from 2,4-DNP \checkmark 2nd mark Compare melting point with known values OR compare melting point with value in database/reference book	2	NOTE: \mathbf{a} (ii) is marked completely independently of \mathbf{a} (i) Mark independently of response for 1st mark DO NOT ALLOW 1st or 2nd marks for taking and comparing boiling points OR chromatograms

Question		er	Mark	Guidance
(b)	(Synthesis 1 Ester linkage must be fully displayed Synthesis 2	6	NOTE: ALL Structures MUST have Hs shown IGNORE bond angles DO NOT ALLOW more than one repeat unit IGNORE brackets and ' n ' ALLOW terminal O - on right ($\mathrm{OR} \mathrm{C}=\mathrm{O}$ on left), i.e. ALLOW end bonds shown as ----DO NOT ALLOW if structure has no end bonds

Question

