Question			er	Mark	Guidance
1	(a)		```\(\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\) \(\rightarrow \mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{CH}_{3} \mathrm{COOH}\) 1st mark Correct structure of ester: \(\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2} \checkmark\) 2nd mark Equation contains correct formulae for \(\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}\), \(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\) AND \(\mathrm{CH}_{3} \mathrm{COOH} \checkmark\)```	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOOCCH}_{3} \mathrm{OR}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOCOCH}_{3}$
	(b)	(i)	(relative) solubility \checkmark	1	IGNORE partition DO NOT ALLOW adsorption OR absorption
		(ii)	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities Alcohol would have short retention time AND alkane would have long retention time	2	IGNORE similar properties

Question	er	Mark	Guidance
(c)	Elemental analysis and molecular formula - 2 marks Use of percentages (to find EF) AND $144 \checkmark$ Molecular formula $=\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2} \checkmark$	$\begin{gathered} 2 \\ \text { marks } \end{gathered}$	ANNOTATIONS MUST BE USED Working $\begin{array}{rc:ccc}\mathrm{C}: \mathrm{H}: \mathrm{O} & =66.63 / 12 & : 11.18 / 1 & : & 22.19 / 16 \\ 5.5525 & : & 11.18 & \vdots & 1.386875 \\ 4 & : & 8 & : & 1\end{array}$ Alternative method: carbon: $(144 \times 66.63 / 100) / 12=8$ hydrogen: $(144 \times 11.18 / 100) / 1=16$ oxygen: $(144 \times 22.19 / 100) / 16=2$
	ester structure - 4 marks	$\begin{gathered} 4 \\ \text { marks } \end{gathered}$	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ OR the organic structure contains $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ If structure is an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ AND ester contains $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \checkmark \checkmark$ If structure is an ester of formula $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{2}$ AND ester contains $\mathrm{O}-\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ AND ester contains $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO} \checkmark \checkmark \checkmark$ i.e. If the ester link is reversed IGNORE any name

Question			Answer	Mark	Guidance
2	(a)		propane-1,2,3-triol \checkmark	1	ALLOW absence of 'e’ after 'propan' ALLOW 1,2,3-propanetriol ALLOW absence of hyphens 1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 123 DO NOT ALLOW 123
2	(b)	(i)	methanol OR ethanol AND renewable \checkmark	1	BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW easy/cheap to manufacture/produce as alternative for renewable/from plants/from fermentation/burns more easily/efficiently
	(b)	(ii)	equilibrium shifts to right \checkmark	1	ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion DO NOT ALLOW improves atom economy

Question			Answer			Mark	Guidance Mark A, B and C independently ie - A can be any of the alternatives in the 1st column - B can be any of the alternatives in the 2nd column - C can be any of the alternatives in the 3rd column ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW correct names for A, B and C For B accept diester For C, IGNORE ' n ' OR brackets (even if wrong); ALLOW solid side bonds Minimum is one correct repeat unit. Polymer must be open at both ends
2	(d)		A	B	C	3	
			$\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{COOH}$ OR	 OR	 OR		
			OR	OR	OR		
			OR	OR	OR		
					Total	8	

Question		Answer	Mark	Guidance
3	(a)	observation: silver OR Ag \checkmark type of reaction: oxidation \checkmark organic product:	3	ALLOW black OR grey ALLOW redox ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW carboxylate, $-\mathrm{COO}^{-}$
3	(b)	1 mark for curly arrow from H^{-}to C of $\mathrm{C}=\mathrm{O} \checkmark$ 1 mark for correct dipole on $\mathrm{C}=\mathrm{O}$ AND curly arrow from double bond to $\mathrm{O}^{\delta-} \checkmark$ 1 mark for correct intermediate with negative charge on O AND curly arrow from O^{-}to H of $\mathrm{H}-\mathrm{O}-\mathrm{H}$ AND curly arrow from $\mathrm{H}-\mathrm{O}$ to O of $\mathrm{H}-\mathrm{O}-\mathrm{H} \checkmark$ 1 mark for correct organic product \checkmark	4	ANNOTATIONS MUST BE USED ALLOW mechanism showing curly arrows from lone pair on H^{-}and O^{-}of intermediate Dipole not required on $\mathrm{H}-\mathrm{O}-\mathrm{H}$ DO NOT ALLOW incorrect dipole on $\mathrm{H}-\mathrm{O}-\mathrm{H}$ ALLOW 1 mark for correct intermediate with '-' charge on O AND curly arrow from O^{-}to H^{+} IGNORE missing OH^{-} DO NOT ALLOW incorrect second product

Question		er	Mark	Guidance
3	(c)	reagent: $\mathrm{Br}_{2} \checkmark$ observation: decolourised OR orange to colourless organic product:	3	DO NOT ALLOW ECF from incorrect reagent, eg 2,4-DNP DO NOT ALLOW goes clear ALLOW red/orange/yellow/brown in any combination ALLOW organic product from reaction of one of the double bonds only, ie OR ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALTERNATIVE reagents For 1st mark, ALLOW H_{2} OR Cl O_{2} OR I_{2} OR HCl OR HBr OR HI OR $\mathrm{H}_{2} \mathrm{O}$ For 2nd mark, there must be a statement of no change OR no observation or similar that implies there is no visible change EXCEPT for I_{2} which has an observation of 'decolourised' OR brown to colourless For 3rd mark, correct organic product must be shown that could be from reaction of both or one of the double bonds.
		Total	10	

Question			Expected Answers	Marks	Additional Guidance
4	(a)	(i)	silver mirror \checkmark	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey
		(ii)	$\mathrm{HOCH}_{2} \mathrm{COOH} \checkmark$	1	ALLOW CH $\mathrm{CH}_{2} \mathrm{OHCOOH}$ OR $\mathrm{CH}_{2} \mathrm{OHCO}_{2} \mathrm{H}$ OR $\mathrm{HOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ OR displayed OR skeletal formula $\mathbf{O R} \mathrm{HOCH}_{2} \mathrm{COO}^{-}$ DO NOT ALLOW $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ OR 2-hydroxyethanoic acid
(b)			$\underset{\text { reagents }}{\mathrm{HOCH}_{2} \mathrm{CHO}}+\underset{\checkmark}{3[\mathrm{O}]} \rightarrow \underset{\text { both products }}{\mathrm{HOOCCOOH}}+\mathrm{H}_{2} \mathrm{O}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+3[\mathrm{O}] \rightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}$ max $=1$ Any correctly balanced equation for partial oxidation can score 1 mark \checkmark $\mathrm{HOCH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{HOCH}_{2} \mathrm{COOH}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+2[\mathrm{O}] \rightarrow \mathrm{OHCCOOH}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+[\mathrm{O}] \rightarrow \mathrm{OHCCHO}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{HOCH}_{2} \mathrm{CHO}+2[\mathrm{O}] \rightarrow \mathrm{HOOCCHO}+\mathrm{H}_{2} \mathrm{O}$
	(c)	(i)	$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} \quad \checkmark$	1	ALLOW $\mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$ OR $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$
		(ii)	curly arrow from H^{-}to $\mathrm{C}^{\delta+} \checkmark$ dipoles and curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O} \checkmark$ intermediate \checkmark curly arrow from intermediate to $\mathrm{H}^{\delta+}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$and if $\mathrm{H}_{2} \mathrm{O}$ is used it must show the curly arrow from the $\mathrm{O}-\mathrm{H}$ bond to the $0 \checkmark$ lone pairs are not essential	4	ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms - Alternative 3 scores all 4 marks even though the intermediate is not shown

Question

	(ii)	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$ is or	1	ALLOW amide shown as either $\mathrm{CH}_{3} \mathrm{CONH}-\mathbf{O R} \mathrm{H}_{3} \mathrm{CCONH}-\mathrm{OR}$ $\mathrm{CH}_{3} \mathrm{COHN}-\mathrm{OR} \mathrm{H}_{3} \mathrm{CCOHN}-$ ALLOW ester shown as either $-\mathrm{OCOCH}_{3} \mathrm{OR}-\mathrm{OOCCH}_{3}$
	(iii)	to ensure t at there are no (harmful) side effects	1	ALLOW impurities reduce effectiveness (of drug) OR might be toxic OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage
(c)		(aspirin contains) ester AND carboxylic acid (paracetamol contains) amide AND phenol	2	IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine
(d)	(i		3	ALLOW hydrolysis by $\mathrm{H}^{+}(\mathrm{aq})$ or H^{+}or $\mathrm{HCl}(\mathrm{aq})$ or HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

		Na OR $\mathrm{NaOH} \checkmark$ from aspirin	\checkmark		or $\mathrm{H}_{2} \mathrm{SO}_{4}$ to give hydroxybenzoic acid + ethanoic acid with aspirin \checkmark and ammonium salt of 4-aminophenol + ethanoic acid with paracetamol \checkmark ALLOW hydrolysis by $\mathrm{OH}^{-}(\mathrm{aq})$ or $\mathrm{NaOH}(\mathrm{aq})$ and other alkali leading to hydrolysis to give carboxylate salt and phenoxide salt on the ring + ethanoate with aspirin \checkmark and 4-aminophenoxide ion + ethanoate ion with paracetamol \checkmark ALLOW HNO_{3} (and $\mathrm{H}_{2} \mathrm{SO}_{4}$) to give NO_{2} in one or more positions on the ring in both aspirin and paracetamol DO NOT ALLOW NH_{3} but correct ammonium salts can be awarded 2 marks ECF DO NOT ALLOW $\mathrm{H}_{2} \mathrm{O}$ but correct products can be awarded 2 marks ECF if no reagent there cannot be any marks for the products If reagent selected is incorrect but would react with either aspirin or paracetamol ALLOW \checkmark ECF for the correct organic product
	(ii)	aspirin only $\mathrm{NaHCO}_{3} \mathrm{OR}_{\mathrm{Na}}^{2} \mathrm{CO}_{3}$ OR metal oxide \checkmark	\checkmark	2	ALLOW Mg, carbonates, NH_{3} ALLOW alcohols (ROH) to give ester if no reagent there cannot be any marks for the products If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW \checkmark ECF for the correct organic product
	(iii)	paracetamol only			ALLOW Br_{2} water

		two marks if any two absorptions are identified correctly $\checkmark \checkmark$ one mark if any one absorption is identified correctly - peak ~ 3.7 (ppm) - bonded to an O - peak ~ 2.7 (ppm) - indicates it is next to a $\mathrm{C}=\mathrm{O}$ - peak ~ 1.2 (ppm) - bonded to other Cs OR part of a chain $\max =2 \text { marks }$ compound identified as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3} \checkmark \checkmark$ 2 marks compound identified as $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2} \checkmark$ 1 mark		(ppm) ALLOW any two gets 2 marks, any one scores 1 mark ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O , multiplet to $\mathrm{C}=\mathrm{O}$ and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
		Total	9	

