Quest	tion	1	er	Mark	Guidance	
1 (ε	a)		(CH ₃ CO) ₂ O + CH ₃ CH(OH)CH ₃ → CH ₃ COOCH(CH ₃) ₂ + CH ₃ COOH 1st mark Correct structure of ester: CH ₃ COOCH(CH ₃) ₂ ✓ 2nd mark Equation contains correct formulae for (CH ₃ CO) ₂ O, CH ₃ CH(OH)CH ₃ AND CH ₃ COOH ✓	2	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW (CH ₃) ₂ CHOOCCH ₃ OR (CH ₃) ₂ CHOCOCH ₃	
(k	b)	(i)	(relative) solubility ✓	1	IGNORE partition DO NOT ALLOW adsorption OR absorption	
		(ii)	The esters would have similar retention times AND similar structures/molecules OR same functional groups OR similar polarities OR similar solubilities ✓ Alcohol would have short retention time AND alkane would have long retention time ✓	2	IGNORE similar properties	

Question	er	Mark	Guidance	
(c)	Elemental analysis and molecular formula – 2 marks Use of percentages (to find EF) AND 144 \checkmark Molecular formula = $C_8H_{16}O_2 \checkmark$	2 marks	ANNOTATIONS MUST BE USED Working C: H: O = 66.63/12: 11.18/1: 22.19/16 5.5525: 11.18: 1.386875 4: 8: 1 Alternative method: carbon: (144 x 66.63/100)/12 = 8 hydrogen: (144 x 11.18/100)/1 = 16 oxygen: (144 x 22.19/100)/16 = 2	
	ester structure – 4 marks CH ₃ O H ₃ C CH ₂ CH ₃ CH ₃ CH ₃ V V	4 marks	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF from earlier structures If not fully correct award following marks: If structure an ester of formula C ₈ H ₁₆ O ₂ OR the organic structure contains C(CH ₃) ₃ ✓ If structure is an ester of formula C ₈ H ₁₆ O ₂ AND ester contains C(CH ₃) ₃ ✓ If structure is an ester of formula C ₈ H ₁₆ O ₂ AND ester contains O-CH ₂ C(CH ₃) ₃ AND ester contains CH ₃ CH ₂ COO ✓ ✓ ✓ i.e. If the ester link is reversed CH ₃ CH ₃ CH ₃ CH ₃ IGNORE any name	

Question	er	Mark	Guidance
	NMR analysis – 4 marks		 NOTE: Each peak can be identified from: its δ value: ± 0.2 ppm a range, eg 'the peak between 2 and 3' its relative peak area (CARE two peaks have an area of 2) its splitting (CARE: two peaks are singlets) labelling on the spectrum
	Triplet (at δ 1.3) shows an adjacent CH ₂ OR triplet (at δ 1.3) shows (C with) 2 adjacent Hs/protons \checkmark (because of splitting: so triplet)		QWC: triplet must be spelled correctly ALLOW neighbouring Hs for adjacent to Hs
	Peak at (δ) 2.2 shows H adjacent to C=O AND adjacent to (C with) no hydrogens ✓ (because of no splitting: so singlet)		For peak at (δ) 2.2 ALLOW singlet at (δ) 2.2 ALLOW singlet labelled 2
	Peak at (δ) 4.2 shows H–C–O AND adjacent CH ₃ OR 3 adjacent Hs/protons ✓ (because of splitting: so quartet)		For peak at (δ) 4.2 ALLOW quartet (labelled 2)
	Peak at (δ) 0.9 show 3 x CH ₃ ✓ (because of singlet and area 9)	4 marks	Check back for any responses added to spectra ADD ^ MARK TO THE SPECTRUM PAGE TO SHOW THAT IT HAS BEEN LOOKED AT
	Total for 4(c)	10	
	Total	15	

	Quest	ion	Answer	Mark	Guidance
2	(a)		propane-1,2,3-triol ✓	1	ALLOW absence of 'e' after 'propan' ALLOW 1,2,3-propanetriol ALLOW absence of hyphens 1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 1 2 3 DO NOT ALLOW 123
2	(b)	(i)	methanol OR ethanol AND renewable ✓	1	BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW easy/cheap to manufacture/produce as alternative for renewable/from plants/from fermentation/burns more easily/efficiently
	(b)	(ii)	equilibrium shifts to right ✓	1	ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion DO NOT ALLOW improves atom economy

	Questi	ion	Answer	Mark	Guidance
2	(c)		CH ₃ CH ₂ COOH + CH ₃ CH ₂ OH → CH ₃ CH ₂ COOCH ₂ CH ₃ + H ₂ O ✓		ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
			$(CH_3CH_2CO)_2O + CH_3CH_2OH \rightarrow CH_3CH_2COOCH_2CH_3 + CH_3CH_2COOH$	2	ALLOW further esterification, <i>ie</i> (CH ₃ CH ₂ CO) ₂ O + 2CH ₃ CH ₂ OH → 2CH ₃ CH ₂ COOCH ₂ CH ₃ + H ₂ O
					ALLOW linear formula for anhydride, ie
					CH ₃ CH ₂ COOCOCH ₂ CH ₃
					If incorrect carboxylic acid/anhydride/alcohol is used, ALLOW ECF for second equation

C	Questi	ion	Answer			Mark	Guidance
2	(d)		A	В	С		Mark A, B and C
			HO-CH ₂ -CH ₂ -CH ₂ -COOH	H_2C C C C C C C C C C	O O-CH ₂ -CH ₂ -CH ₂ -C		 independently ie A can be any of the alternatives in the 1st column B can be any of the alternatives in the 2nd column
			OR	OR	OR		C can be any of the
			CH ₃ HO—CH—CH ₂ —COOH	H ₂ C—C	CH ₃ O O—CH—CH ₂ —C	3	alternatives in the 3rd column ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of
			OR	OR	OR		
			C₂H₅ HO—CH—COOH	C ₂ H ₅ CH—C	C ₂ H ₅ O O——CH——C		formulae as long as unambiguous DO NOT ALLOW molecular formulae
			OR	OR	OR		
			СН ₃ НО—СН ₂ —СН—СООН	CH—C H ₂ C—O	CH₃ O O—CH₂—CH—C		ALLOW correct names for A, B and C For B accept diester For C,
			OR	OR	OR		IGNORE 'n' OR brackets
			СН ₃ НО—С—СООН СН ₃	H ₃ C C C O	CH ₃ O O—C— CH ₃		(even if wrong); ALLOW solid side bonds Minimum is one correct repeat unit. Polymer must be open at both ends
					Total	8	

	Question		Answer	Mark	Guidance
3	(a)		observation: silver OR Ag ✓ type of reaction: oxidation ✓ organic product: H ₃ C CH ₃ CH ₄	3	ALLOW black OR grey ALLOW redox ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW carboxylate, -COO-
3	(b)		H H R C OH (+ OH H Products 1 mark for curly arrow from H to C of C=O ✓ 1 mark for correct dipole on C=O AND curly arrow from double bond to O ^{δ-} ✓	4	ALLOW mechanism showing curly arrows from lone pair on H ⁻ and O ⁻ of intermediate
			1 mark for correct intermediate with negative charge on O AND curly arrow from O⁻ to H of H–O−H AND curly arrow from H–O to O of H–O−H ✓ 1 mark for correct organic product ✓		Dipole not required on H–O–H DO NOT ALLOW incorrect dipole on H–O–H ALLOW 1 mark for correct intermediate with '–' charge on O AND curly arrow from O ⁻ to H ⁺ IGNORE missing OH ⁻ DO NOT ALLOW incorrect second product

Question	er	Mark	Guidance
Question 3 (c)	er reagent: Br₂ ✓ observation: decolourised OR orange to colourless ✓ organic product: ✓ H ₃ C CH ₃ H		Guidance DO NOT ALLOW ECF from incorrect reagent, eg 2,4-DNP DO NOT ALLOW goes clear ALLOW red/orange/yellow/brown in any combination ALLOW organic product from reaction of one of the double bonds only, ie H ₃ C, CH ₃ H H ₃ C, CH ₃ H
	Br CH ₃	3	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
			ALTERNATIVE reagents For 1st mark, ALLOW H_2 OR Cl_2 OR l_2 OR HCl OR HBr OR Hl OR H_2O
			For 2nd mark, there must be a statement of no change OR no observation or similar that implies there is no visible change EXCEPT for I ₂ which has an observation of 'decolourised' OR brown to colourless For 3rd mark,
			correct organic product must be shown that could be from reaction of both or one of the double bonds.
	Total	10	

Q	uest	ion	Expected Answers	Marks	Additional Guidance
4	(a)	(i)	silver mirror ✓	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey
		(ii)	HOCH₂COOH ✓	1	ALLOW CH ₂ OHCOOH OR CH ₂ OHCO ₂ H OR HOCH ₂ CO ₂ H OR displayed OR skeletal formula OR HOCH ₂ COO ⁻ DO NOT ALLOW C ₂ H ₄ O OR 2-hydroxyethanoic acid
	(b)		HOCH ₂ CHO + 3[O] → HOOCCOOH + H ₂ O reagents \checkmark both products \checkmark	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark\checkmark$ if molecular formula used $C_2H_4O_2 + 3[O] \rightarrow C_2H_2O_4 + H_2O$ max = 1
					Any correctly balanced equation for partial oxidation can score 1 mark \checkmark HOCH ₂ CHO + [O] \rightarrow HOCH ₂ COOH OR HOCH ₂ CHO + 2[O] \rightarrow OHCCOOH + H ₂ O OR HOCH ₂ CHO + [O] \rightarrow OHCCHO + H ₂ O OR HOCH ₂ CHO + 2[O] \rightarrow HOOCCHO + H ₂ O
	(c)	(i)	HOCH ₂ CH ₂ OH ✓	1	ALLOW HO(CH ₂) ₂ OH OR (CH ₂ OH) ₂ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula (C ₂ H ₆ O ₂)
		(ii)	curly arrow from H $^{-}$ to C $^{\delta+}$ \checkmark dipoles <u>and</u> curly arrow from C=O bond to O \checkmark intermediate \checkmark curly arrow from intermediate to H $^{\delta+}$ in H $_2$ O/ H $^{+}$ and if H $_2$ O is used it must show the curly arrow from the O-H bond to the O \checkmark	4	ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms – Alternative 3 scores all 4 marks even though the intermediate is not shown

Question	Expected Answers	Marks	Additional Guidance
5 (a)	НО	1	ALLOW HO OT HO OT HO OT HO OT OT OT
(b) (i	equation (CH ₃ CO) ₂ O + H ₂ N OH reactants ✓ H ₃ C OH products ✓	2	ALLOW (CH ₃ CO) ₂ O + H ₂ NC ₆ H ₄ OH → CH ₃ CONHC ₆ H ₄ OH + CH ₃ COOH ALLOW H N OH DO NOT ALLOW molecular formulae

	(ii)	Or H ₃ C Or H ₃ C Or O H ₃ C O O O O O O O O O O O O O	1	ALLOW amide shown as either CH ₃ CONH- OR H ₃ CCONH- OR CH ₃ COHN- OR H ₃ CCOHN- ALLOW ester shown as either -OCOCH ₃ OR -OOCCH ₃
	(iii)	to ensure t at there are no (harmful) side effects	1	ALLOW impurities reduce effectiveness (of drug) OR might be toxic OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is safe IGNORE dangerous OR nasty OR can kill OR increased dosage
(c)		(aspirin contains) ester AND carboxylic acid ✓	2	IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid
		(paracetamol contains) amide AND phenol ✓		IGNORE arene or benzene or aromatic or phenyl or methyl but any other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine
(d)	(i		3	ALLOW hydrolysis by H ⁺ (aq) or H ⁺ or HCl(aq) or HCl or H ₂ SO ₄ (aq)

Na OR NaOH ✓ COO (Na ⁺) from aspirin H ₃ C C O (Na ⁺) H from paracetamol	✓	or H₂SO₄ to give hydroxybenzoic acid + ethanoic acid with aspirin ✓ and ammonium salt of 4-aminophenol + ethanoic acid with paracetamol ✓ ALLOW hydrolysis by OH⁻(aq) or NaOH(aq) and other alkali leading to hydrolysis to give carboxylate salt and phenoxide salt on the ring + ethanoate with aspirin ✓ and 4-aminophenoxide ion + ethanoate ion with paracetamol ✓ ALLOW HNO₃ (and H₂SO₄) to give NO₂ in one or more positions on the ring in both aspirin and paracetamol ✓✓ DO NOT ALLOW NH₃ but correct ammonium salts can be awarded 2 marks ECF DO NOT ALLOW H₂O but correct products can be awarded 2 marks ECF if no reagent there cannot be any marks for the products If reagent selected is incorrect but would react with either aspirin or paracetamol ALLOW ✓ ECF for the correct organic product
(ii) aspirin only NaHCO₃ OR Na₂CO₃ OR metal oxide ✓ COO⁻ (Na⁺) H₃C O	2	ALLOW Mg, carbonates, NH ₃ ALLOW alcohols (ROH) to give ester if no reagent there cannot be any marks for the products H ₃ C R If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW ✓ ECF for the correct organic product
(iii) paracetamol only		ALLOW Br ₂ water

Br ₂ ✓ H ₃ C — C N Br OH	2	ALLOW one or more Br at any position on the ring DO NOT ALLOW Br substitution of OH ALLOW acyl chloride or acid anhydride and corresponding ester ALLOW FeCl₃ to form a purple complex ion (structure not required) ALLOW diazonium and structure showing azo group substituting one of the Hs in the ring if no reagent there cannot be any marks for the products If reagent selected is incorrect but would react with BOTH aspirin and paracetamol ALLOW ✓ ECF for the correct organic product
Total	14	

Qu	estio	n Expected Answers	Marks	Additional Guidance
6	(a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
		¹³ C NMR – 2 marks (CH ₃) ₂ CHCH ₂ COOH has 4 peaks (due to 4 different C environments) ✓ (CH ₃) ₃ CCOOH has 3 peaks (due to 3 different C environments) ✓		ALLOW ¹³ C NMR detects the number of/different C environments' for 1 ✓, suitable example for the 2nd mark
	(b)	splitting pattern explains any two in terms of 'n + 1 rule' for two marks ✓ ✓ Explains any one peak for 1 mark ✓	6	mark for correct ester if two splitting patterns are correctly analysed ignore the third
		singlet therefore adjacent C (if any) has no Hs		ALLOW singlet because next or bonded to an O
		multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs		ALLOW multiplet/heptet because next to 2 CH ₃ s
		doublet therefore adjacent C is bonded to 1H		ALLOW doublet because next to a CH
		must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks		
		chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ • peak ~3.7 (ppm) – bonded to an O • peak ~2.7 (ppm) – indicates it is next to a C=O • peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks		ALLOW any two gets 2 marks, any one scores 1 mark HC—O HC—C R—CH 3.7 (ppm) 2.7 (ppm) 1.2 (ppm) ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
compound identified as (CH ₃) ₂ CHCOOCH ₃ ✓✓ 2 marks compound identified as CH ₃ COOCH(CH ₃) ₂ ✓ 1 mark		
Total	9	