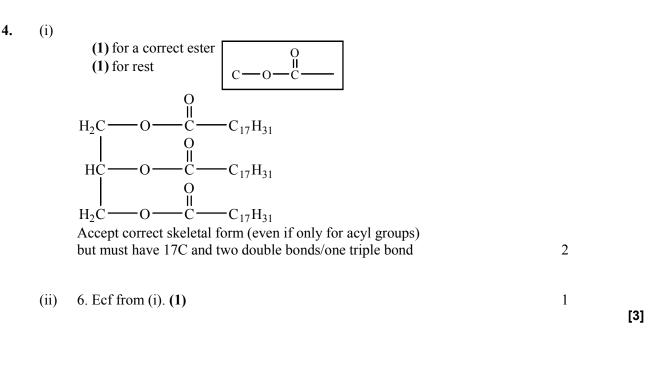

F324: Rings, Polymers and Analysis 4.1.3 Carboxylic Acids and Esters /46

2. (i) hydrolysis (1)

	(sorbitan monolaurate is an) ester (1)		
	broken down to form an alcohol and carboxylic acid/salt (1) AW / equation to show the reaction	3	
(ii)	sorbitan monolaurate is made from a renewable resource / not based on crude oil (1) AW	1	[4]

3. (a)


(b) propanoic acid (1) (2-)methylpropan-1-ol (1) heat (1) conc. H_2SO_4 (1) (allow ecf from part (a) for the equation) $CH_3CH_2COOH + CH_3)_2CHCH_2OH \rightarrow CH_3CH_2COOCH_2CH(CH_3)_2 + H_2O$ reactants (1) products (1)

(c) mass spectrum / spectrometry (1)
 molecular ion peak /
 m/e or mass of the peak furthest right (1) AW

[10]

6

2

- 5. Three of following points: (1)(1)(1)
 - 1. There is van der Waals (IDID) between triglycerides.
 - 2. There is van der Waals between triglycerides and (non-polar) solvent.
 - 3.Triglycerides cannot hydrogen bond (to water)(enough).
 - Because there are not enough suitable sites/oxygen atoms Or long hydrocarbon chains do not hydrogen bond/would interfere with hydrogen bonding in water AW

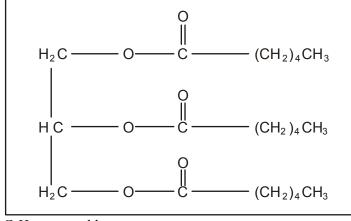
[3]

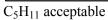
3

alkene (1) (a) (i) ester (1) 2 allow "C=C double bond" i. (1) 1 C₁₂H₁₄O₂ (1) 1 ii. same structural formula/order of bonds, (b) different spacial arrangement AW (1) description or diagram showing **B** and how it is different from A (1) \square 2 (c) H₃C

6.

(1)


[12]


2

2

2

[2]

[2]

2

1

1

1

2

3

8.

(i)

$$\begin{array}{ccccccccc}
H & O-H & O \\
H & C-C & C & C & H \\
H & C & C & C & C & H \\
H & H & O-C & C-H \\
H & H & O & H & H \\
\end{array}$$

(ii)	any sensible change in flavour linked to the	
	presence of the ester or loss of the acid $(1) - e.g.$	
	'more fruity due to the ester'	
	'less sour as acids get used up'	

9. (i) flavouring / fruity smell etc *NOT* perfume or sweetener

(ii)
$$\operatorname{conc} H_2 \operatorname{SO}_4(1)$$

reflux/ distil (1)

(iii)
$$CH_3COOH + C_9H_{15}CH_2OH \rightarrow CH_3COOCH_2C_9H_{15} + H_2O$$

(1) (1) (1)
allow $C_2H_4O_2$ *and* $C_{12}H_{20}O_2$
but **NOT** *wrong structures*
allow ecf on the wrong acid

[6]

(i) $H^+/acid / named strong acid eg H_2SO_4 / HCl$

(ii)

10.

0 н | -С -0-Ĥ.

displayed ester group (1) rest of the ester (1)

[3]

1

2