
C	luesti	on	Answer	Mark	Guidance
1	(a)		magnetic resonance imaging/providing diagnostic information/body scanners. ✓	1	 ALLOW MRI/scanning internal structures e.g. brain ALLOW detection of tumours/cancer/haemorrhage/aneurysm IGNORE reference to drugs, chemicals or functional groups IGNORE analysis of blood DO NOT ALLOW CT scan/CAT scan
	(b)	(i)	Radio (waves) ✓	1	ALLOW a value in the range 60 – 900 MHz
		(ii)	The solvent does not have any hydrogen/H/protons ✓	1	 ALLOW to prevent (¹H nuclei from) the solvent from interfering with the NMR spectrum ALLOW does not show on the spectrum ALLOW no peak/signal (from solvent) IGNORE volatility
4	(c)		14 🗸	1	
	(d)		NMR analysis (5 marks) M1 Peaks between (δ) 7.1 and 7.5 (ppm) OR Relative peak area of 7 OR Multiplet = M2 Peak at 5.2/5.3	7	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE analysis of ¹³ C spectrum Each peak can be identified from its δ value ± 0.2 ppm ALLOW (seven) benzene ring protons OR aromatic protons DO NOT ALLOW benzene ring without reference to protons ALLOW C ₆ H ₆ IGNORE

Question	Answer	Mark	Guidance
	OR Relative peak area of 1 = N-H ✓		IGNORE O-H, CONH AND C=CH
	M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = CH OR $C_6H_5CH_2 \checkmark$		ALLOW quadruplet IGNORE CHC=O AND HC-N
	M4 Peak at 0.7/0.8 OR Triplet = R-CH OR R-CH ₃ ✓		DO NOT ALLOW triplet = $CH_3 OR CH_2CH_3$
	M5 Triplet (at δ 0.7) AND quartet (at δ 2.3) = CH ₂ CH ₃ OR triplet at (δ) 0.7 shows (C with) 2 adjacent Hs/protons = CH ₂ CH ₃ OR quartet (at δ 2.3) shows (C with) 3 adjacent Hs/protons = CH ₂ CH ₃ \checkmark		This also scores M4 if triplet is linked to $R-CH_3$ ALLOW CH_3CH_2 described as $R-CH_3$ and 2 adjacent H OR $-CH_{2^-}$ and 3 adjacent H The information can be presented on the spectrum or in a table.

C	Questior	Answer	Mark		Guidance				
				7	н 1 7 6	5 4 5 chemical shift, δ/ppm	HC-C=N- R-CH 3 2 2 2 1 0		
				Chemical shift/ppm	Relative peak area	Splitting pattern	Type of proton		
				7.1 – 7.5	7	Multiplet	Ю́ ^н		
				5.3	1	Singlet	N-H		
				2.3/2.4	2	Quartet	CH		
				1.7/1.8	3	Singlet	HC-C=N-		
				0.7/0.8	3	triplet	R-CH/R-CH₃		
		QWC : triplet or quartet spelled correctly in the correct context for M5		IGNORE peak information is o H ₃ C-C=N- sco (see below)	in the range 1 jiven in the qu res one mark	.6–2.2 = HC–C lestion. for the identifica	=N– because this ation of R ¹ or R ²		

Quest	tion	Answer	Mark	Guidance
(e)		Carbonyl compound K	1	ALLOW ECF from incorrect compound L
		H ₃ C C=O CH ₃ CH ₂		Must be a correct carbonyl structure
		\checkmark		
		Total	12	

Question		Answer		Guidance	
2 (a)		TMS/tetramethylsilane (which is the) standard (for chemical shift measurements) ✓	1	ALLOW $(CH_3)_4Si$ ALLOW TMS is the reference OR TMS has $\delta = 0$ (ppm) OR for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak	
(b)		NMR analysis = 5 marks M1: Peak(s) at (δ) 9.7 = CHO \checkmark M2: Peak(s) at (δ) 7.1 = C ₆ H ₄ \checkmark M3: Triplet at (δ) 1.3/peak at 1.3 AND quartet (at δ 2.6)/ peak at 2.6 = CH ₂ CH ₃ \checkmark M4: Triplet at (δ) 9.7/peak at 9.7 AND doublet (at δ 3.7)/peak at 3.7 = CH ₂ CHO \checkmark	9	 NOTE: Each peak can be identified from: its δ value a range, e.g. "the peak between 0.8 and 2.0" its relative peak area (beware two peaks with 2 protons) its splitting (beware two triplets) labelling on the spectrum ALLOW CH₂CHO/aldehyde IGNORE reference to phenol ALLOW (four) benzene ring proton(s) IGNORE reference to phenol M3 and M4 Look for a clear link (using words or diagrams) between the two peaks 	

Question	Answer	Mark	Guidance
	 M5: (n+1 rule) Any one of the following triplet at (δ) 1.3 shows (C with) 2 adjacent Hs/protons OR adjacent CH₂ (because of splitting: so triplet) quartet at (δ 2.6 shows) (C with) 3 adjacent Hs/protons OR adjacent CH₃ triplet at (δ) 9.7 shows (C with) 2 adjacent Hs/protons OR adjacent CH₂ doublet at (δ 3.7 shows) (C with) 1 adjacent H/proton OR adjacent CH QWC: triplet spelled correctly in the correct context 		 ALLOW a response that implies a splitting into three for a triplet/into two for a doublet etc. ALLOW "neighbouring" Hs for "adjacent to" Hs IGNORE other comments about splitting once M5 has been awarded DO NOT ALLOW one of M3 or M4 or M5 if triplet not seen
	Aldehyde structure = 4 marks CH_3CH_2 CH_2CHO $VVVV$		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous IF structure contains $C_6H_4 \checkmark$ IF structure contains C_6H_4 AND the organic structure contains CH_3CH_2 directly attached to the benzene ring OR contains CH_2CHO directly attached to the benzene ring $\checkmark \checkmark$ IF structure has formula $C_{10}H_{12}O$ AND structure contains CH_4 AND the structure contains CH_4 AND the structure contains CH_4 AND the structure contains CH_2CHO AND structure contains CH_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,2 OR 1,3 substituted $\checkmark \checkmark \checkmark$

C	Question		Answer	Mark	Guidance
					IF structure has formula $C_{10}H_{12}O$ AND structure contains C_6H_4 AND the structure contains CH_3CH_2 AND contains CH_2CHO AND 1,4 substituted $\checkmark \checkmark \checkmark \checkmark$ (use of ¹³ C data)
			Total	10	

G	Questi	ion			Answer	Marks	Guidance	
3	(a)		OR empiri	C 73.15% 6.10 5 0 (C:H:O) = $6.10 : 7.33$ ical formula = C_5H_6O so molecular formula =	\checkmark	2	ALLOW alternative method $73.15\% \times 164 = 120$ } ratio = 10 OR 5 $7.37\% \times 164 = 12.1$ } 12 OR 6 $19.48\% \times 164 = 31.9$ 2 OR 1 \checkmark \checkmark This mark is for some evidence of using M_r , which is twice the value that you would obtain from the empirical formula	
	(b)		seven √			1		
	(c)	(i)	TMS is the	e standard (for chemic	cal shift measurements) ✓	1	ALLOW TMS is the reference OR for calibration IGNORE unreactive / volatile / it gives a sharp peak ALLOW TMS = 0 ppm / TMS is used for comparison	
		(ii)	environme	number of protons/hyc ent / peak / region proton environments v	drogens in each with protons in ratio 5:1:6 \checkmark	1	ALLOW (relative) number of each type of proton/hydrogen IGNORE number of protons in the compound	
		(iii)	The peak C AND one The peaks benzene r	Analysis (1 mark) at 185ppm suggests a) of the following: s between 120ppm an ing eaks at 18ppm AND 3	nd 160ppm indicate a	7	FULL ANNOTATIONS WITH TICKS, CROSSES,CON ETC MUST BE USED Inclusion of an incorrectly assigned ¹³ C peak CONS M1	

Question	Answer	Marks	Guidance
Question	¹ H ANALYSIS (4 marks) Doublet / peak at 1.2 shows R-CH AND 6 H's / 2 CH ₃ (in this environment) ✓ Multiplet / septet / heptet / peak split into 7 / peak at 2.7ppm indicates HC—C The doublet suggests that two CH ₃ groups are attached to a CH OR the multiplet / septet / heptet suggests that the	Marks	Candidates may quote δ values as ranges taken from Data Sheet, so ALLOW tolerance (ppm) eg 6.5–8 aromatic HC \downarrow 2.0–2.9 carboxyl 0.7–2.0 alkyl R-CH
	CH group is attached to two CH ₃ groups ✓ ✓ QWC must spell one of <i>multiplet, septet, heptet</i> OR <i>doublet correctly</i> Peak at 7.3ppm indicates a benzene ring AND 5 H's ✓ Compound identification (2 marks)		ALLOW peaks labelled on the spectrum If QWC word is not used, MAX 3 for proton NMR ALLOW C_6H_5 IGNORE reference to phenol Allow as C_6H_5 if they state that the benzene ring has 5 H's
	IF identified as then two marks ✓✓ IF identified as then one mark ✓		
	Total	12	

www.accesstuition.com

Q	Question		er		Guidance	
4	(a)	(i)	(number of esters) from number of peaks/retention times AND (proportions) from (relative) peak areas ✓	1	BOTH points for 1 mark ALLOW peak heights OR sizes of peaks	
		(ii)	(Some esters may have) same retention time ✓	1	ALLOW (very) similar retention times ALLOW some esters come out at same time	
	(b)		Ester structure 3 marks \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	3	ANNOTATIONS MUST BE USED ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF for structure IF the structure is NOT fully correct, award the following marks: IF ESTER shown AND contains ONE of the following: C_6H_5 OR $CH_3C=0$ OR CH_2CH_2 1 mark \checkmark IF ESTER shown AND contains TWO of the following: C_6H_5 OR $CH_3C=0$ OR CH_2CH_2 2 marks $\checkmark \checkmark$ IF ESTER shown AND contains TWO of the following: C_6H_5 OR $CH_3C=0$ OR CH_2CH_2 2 marks $\checkmark \checkmark$ IF ESTER contains C_6H_5 AND CH_2CH_2 BUT ester link is reversed 2 marks $\checkmark \checkmark$ DO NOT ALLOW CH_2CH_2 with H on any adjacent Cs e.g. DO NOT ALLOW $CH_2CH_2CH_3$, $CH_2CH_2CH_2$, etc. IGNORE any name	

www.accesstuition.com

Question	er	Marks	Guidance
	Mass spectrum		Check back for any responses added to spectrum
	164 linked directly to molecular formula of $C_{10}H_{12}O_2$ OR an ester structure with formula $C_{10}H_{12}O_2 \checkmark$ <i>This direct link could be seen anywhere in the response</i> e.g. 164 is $C_{10}H_{12}O_2$ e.g. $C_{10}H_{12}O_2 = 120 + 12 + 32 = 164$ e.g. $(164 - 44/COO) = 120; 120 = C_9H_{12}$	1	Credit responses throughout provided that it is clear which peaks are being referred to
	NMR analysis		ALLOW tolerance on δ values: ± 0.2 ppm Throughout, ALLOW for H: proton OR H ⁺
	QWC Triplet must be spelled correctly and used in correct context Triplet at 2.8 ppm shows an adjacent CH_2 AND		For adjacent CH ₂ , ALLOW (C) adjacent to 2 Hs
	Triplet at 4.4 ppm shows an adjacent $CH_2 \checkmark$		ALLOW There are 2 triplets AND triplet shows an adjacent CH_2
	Peak at 2.2 shows CH ₃ –C=O OR Peak at 2.2 shows HC–C=O AND 3 Hs of this type OR Peak at 2.2 shows HC–C=O AND adjacent to (C with) no Hs√		For peak at (δ =) 2.2 ALLOW singlet OR peak labelled 3
	Peak at 7.3 shows 5 aromatic Hs OR shows C ₆ H ₅ ✓ 5Hs required		For peak at (δ =) 7.3 ALLOW peak labelled 5 OR multiplet OR quintet OR hextet OR heptet
	Peak at 2.8 shows C_6H_5 -C H OR C_6H_5 -C H₂ \checkmark Just require C_6H_5 -CH as testing environment here		For peak at (δ =) 2.8 ALLOW triplet at 2.8
	Peak at 4.4 due to HC–O OR H ₂ C–O \checkmark Just require HC–O as testing environment here	5	For peak at (δ =) 4.4 ALLOW triplet at 4.4
	Total	11	

Q	uesti	on	Answer	Mark	Guidance
5	(a)		idea of separating (the components/compounds) ✓ idea of (identifying compounds) by comparison with a (spectral) database ✓	2	 ALLOW (identifies compounds) using fragmentation (patterns)/fragment ions (but IGNORE molecular ions) ✓ Note: Each marking point does not need to be linked to GC or MS (The question asks about GC–MS as a combined technique)
	(b)	(i)	54.2% of 118 OR 54.2/118 x 100 = 64/63.96 (hence there are 4 oxygens) ✓		IGNORE calculation that proves that $C_4H_6O_4$ has a molar mass of 118 (ie 12 x 4 + 6 x 1 + 16 x 4) ALLOW 64/118 x 100 = 54.2% for 1st mark IGNORE method using empirical formula
			118 – 64 = 54 hence 4 carbon (48) and 6 hydrogen (6) ✓	2	ALLOW any reasonable working leading to 4C Note: 54.2(%) ÷ 16 would not get the 1st mark but the answer could be used to get the 2nd mark
		(ii)	carboxyl group OR carboxylic acid ✓ must be name (in question)	1	IGNORE working, e.g. O–H, C=O, C–O on IR spectrum

Question		on	er	Mark	Guidance
5	(c)	(i)	Chemical shifts Any two peaks identified for 1 mark \checkmark peak at δ = 0.8 ppm due to R–CH / CH ₃ CH peak at δ = 3.4 ppm due to HC–C=O peak at δ = 11 ppm due to COOH / carboxylic acid	1	ANNOTATIONS MUST BE USED CHECK SPECTRUM for responses ANNOTATE with '^' For peak at ($\delta =$) 0.8 (ppm), ALLOW doublet and vice versa For peak at ($\delta =$) 3.4 (ppm), ALLOW quartet ' and vice versa For peak at ($\delta =$) 11 (ppm), ALLOW singlet and vice versa
			Splitting quartet shows adjacent CH ₃ OR 3 adjacent Hs ✓ doublet shows adjacent CH OR 1 adjacent H ✓	2	ALLOW peak at δ = 2.4 ppm for peak at δ = 3.4 ppm ALLOW tolerance on δ values: ± 1 ppm For quartet, ALLOW quadruplet
			<i>Identification</i> 0 СН ₃ 0 но—с—сн—с—он ✓	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)	(CD ₃) ₂ SO / D / It does not absorb OR does not give a peak ✓	1	ALLOW (CD ₃) ₂ SO / does not contain H ALLOW undeuterated solvents would absorb OR give peaks ALLOW responses in terms of (CH ₃) ₂ SO producing peaks
		(iii)	TMS is the standard (for chemical shift measurements) \checkmark	1	ALLOW TMS is the reference OR TMS has $\delta = 0$ (ppm) OR for calibration IGNORE unreactive, volatile, it gives a sharp peak
		(iv)	peak at δ = 11.0 (ppm) disappears \checkmark	1	ALLOW COOH (peak) disappears ALLOW OH (peak) disappears
			Total	12	