

Question	Answer	Mark	Guidance
	OR Relative peak area of 1 $=\mathrm{N}-\mathrm{H}$ M3 Peak at 2.3/2.4 OR Relative peak area of 2 OR Quartet = OR $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$ M4 Peak at 0.7/0.8 OR Triplet $=\mathrm{R}-\mathrm{CH} \text { OR } \mathrm{R}-\mathrm{CH}_{3}$ M5 Triplet (at $\delta 0.7$) AND quartet (at $\delta 2.3$) $=\mathrm{CH}_{2} \mathrm{CH}_{3}$ OR triplet at (δ) 0.7 shows (C with) 2 adjacent $\mathrm{Hs} /$ protons $=\mathrm{CH}_{2} \mathrm{CH}_{3}$ OR quartet (at $\delta 2.3$) shows (C with) 3 adjacent $\mathrm{Hs} /$ protons $=\mathrm{CH}_{2} \mathrm{CH}_{3}$		IGNORE O-H , CONH AND C=CH ALLOW quadruplet IGNORE CHC=O AND HC-N DO NOT ALLOW triplet $=\mathrm{CH}_{3} \mathrm{OR} \mathrm{CH}_{2} \mathrm{CH}_{3}$ This also scores $\mathbf{M 4}$ if triplet is linked to $\mathrm{R}-\mathrm{CH}_{3}$ ALLOW $\mathrm{CH}_{3} \mathrm{CH}_{2}$ described as $\mathrm{R}-\mathrm{CH}_{3}$ and 2 adjacent H $\mathrm{OR}-\mathrm{CH}_{2}$ - and 3 adjacent H The information can be presented on the spectrum or in a table.

Question

Question	Answer	Mark	Guidance
	Identification of \mathbf{R}^{1} and $\mathbf{R}^{\mathbf{2}}$ (2 marks) Orange precipitate L Correct structure scores 2 marks $\mathbf{R}^{\mathbf{1}}$ or $\mathbf{R}^{\mathbf{2}}=-\mathrm{CH}_{3}$ \mathbf{R}^{1} or $\mathbf{R}^{2}=$		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous Marks are for structure of R^{1} and R^{2} IGNORE errors in the rest of the structure ALLOW 1 mark for CH_{3} and $\mathrm{CH}_{3} \mathrm{CH}_{2}$ swapped, i.e. the following structure ALLOW $\mathrm{H}_{3} \mathrm{C}-\mathrm{C}=\mathrm{N}$ - MUST BE 1,4-disubstituted (14 carbon environments in the ${ }^{13} \mathrm{C}$ NMR spectrum

Questi	Answer	Mark	Guidance
(e)	Carbonyl compound K	1	ALLOW ECF from incorrect compound \mathbf{L} Must be a correct carbonyl structure
	Total	12	

Question		Answer	Mark	Guidance
2	(a)	TMS/tetramethylsilane (which is the) standard (for chemical shift measurements)	1	$\text { ALLOW }\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ ALLOW TMS is the reference OR TMS has $\delta=0(\mathrm{ppm})$ OR for calibration OR for comparison IGNORE solvent, unreactive, volatile, it gives a sharp peak
	(b)	NMR analysis = 5 marks M1: Peak(s) at (δ) $9.7=\mathrm{CHO}$ M2: $\operatorname{Peak}(\mathrm{s})$ at (δ) $7.1=\mathrm{C}_{6} \mathrm{H}_{4}$ M3: Triplet at (δ) 1.3/peak at 1.3 AND quartet (at $\delta 2.6$)/ peak at $2.6=\mathrm{CH}_{2} \mathrm{CH}_{3}$ M4: Triplet at (δ) 9.7/peak at 9.7 AND doublet (at $\delta 3.7$)/peak at $3.7=\mathrm{CH}_{2} \mathrm{CHO} \checkmark$	9	NOTE: Each peak can be identified from: - its δ value - a range, e.g. "the peak between 0.8 and 2.0 " - its relative peak area (beware two peaks with 2 protons) - its splitting (beware two triplets) - labelling on the spectrum ALLOW CH2CHO/aldehyde IGNORE reference to phenol ALLOW (four) benzene ring proton(s) IGNORE reference to phenol M3 and M4 Look for a clear link (using words or diagrams) between the two peaks

Question	Answer	Mark	Guidance
			IF structure has formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ AND structure contains $\mathrm{C}_{6} \mathrm{H}_{4}$ AND the structure contains $\mathrm{CH}_{3} \mathrm{CH}_{2}$ AND contains $\mathrm{CH}_{2} \mathrm{CHO}$ AND 1,4 substituted $\checkmark \checkmark \checkmark \checkmark$ (use of ${ }^{13} \mathrm{C}$ data)
	Total	10	

Question			Answer			Marks	Guidance
3	(a)		\% mol ratio molar OR em M_{r} is 1	$\begin{aligned} & \hline \mathbf{C} \\ & \hline 73.15 \% \\ & \hline 6.10 \\ & \hline 5 \\ & \hline \end{aligned}$ $: \mathrm{H}: \mathrm{O})=6$	O 19.48% 1.22 1 5:6:1 \checkmark \checkmark	2	ALLOW alternative method This mark is for some evidence of using M_{r}, which is twice the value that you would obtain from the empirical formula
	(b)		seven			1	
	(c)	(i)	TMS is	dard (for	urements) \checkmark	1	ALLOW TMS is the reference OR for calibration IGNORE unreactive / volatile / it gives a sharp peak ALLOW TMS $=0 \mathrm{ppm} /$ TMS is used for comparison
		(ii)	(relativ environ OR thr	ber of pr peak / r on enviro	ach in ratio 5:1:6	1	ALLOW (relative) number of each type of proton/hydrogen IGNORE number of protons in the compound
		(iii)	${ }^{13} \mathrm{C}$ NM The pe \qquad AND The pe benzen OR the	lysis (1 85ppm s followi tween 12 at 18ppm	p / dicate a st C-C	7	FULL ANNOTATIONS WITH TICKS, CROSSES,CON ETC MUST BE USED Inclusion of an incorrectly assigned ${ }^{13} \mathrm{C}$ peak CONS M1

Question	Answer	Marks	Guidance
	${ }^{1} \mathrm{H}$ ANALYSIS (4 marks) Doublet / peak at 1.2 shows R-CH AND 6 H's / $2 \mathrm{CH}_{3}$ (in this environment) Multiplet / septet / heptet / peak split into 7 / peak at 2.7ppm indicates The doublet suggests that two CH_{3} groups are attached to a CH OR the multiplet / septet / heptet suggests that the CH group is attached to two CH_{3} groups \checkmark QWC must spell one of multiplet, septet, heptet OR doublet correctly Peak at 7.3ppm indicates a benzene ring AND 5 H's Compound identification (2 marks) IF identified as then two marks IF identified as then one mark		Candidates may quote δ values as ranges taken from Data Sheet, so ALLOW tolerance (ppm) eg 6.5-8aromatic 2.0-2.9 carboxyl 0.7-2.0 alkyl ALLOW peaks labelled on the spectrum If QWC word is not used, MAX 3 for proton NMR ALLOW $\mathrm{C}_{6} \mathrm{H}_{5}$ IGNORE reference to phenol Allow has 5 H's
	Total	12	

Question			er	Marks	Guidance
4	(a)	(i)	(number of esters) from number of peaks/retention times AND (proportions) from (relative) peak areas \checkmark	1	BOTH points for 1 mark ALLOW peak heights OR sizes of peaks
		(ii)	(Some esters may have) same retention time \checkmark	1	ALLOW (very) similar retention times ALLOW some esters come out at same time
	(b)		Ester structure 3 marks STICKS IF there are sticks are shown in $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathbf{O R}$ in CH_{3} DO NOT AWARD when first seen DO NOT ALLOW sticks on the benzene ring, Sticks on benzene ring must be interpreted as methyl groups e.	3	ANNOTATIONS MUST BE USED ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous NO ECF for structure \qquad IF the structure is NOT fully correct, award the following marks: IF ESTER shown AND contains ONE of the following: $\mathrm{C}_{6} \mathrm{H}_{5}$ OR $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ OR $\mathrm{CH}_{2} \mathrm{CH}_{2}$ IF ESTER shown AND contains TWO of the following: $\mathrm{C}_{6} \mathrm{H}_{5}$ OR $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ OR $\mathrm{CH}_{2} \mathrm{CH}_{2}$ 2 marks $\checkmark \checkmark$ IF ESTER contains $\mathrm{C}_{6} \mathbf{H}_{5}$ AND $\mathrm{CH}_{2} \mathrm{CH}_{2}$ BUT ester link is reversed 2 marks $\checkmark \checkmark$ DO NOT ALLOW $\mathrm{CH}_{2} \mathrm{CH}_{2}$ with H on any adjacent Cs e.g. DO NOT ALLOW $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$, etc. IGNORE any name

Question			Answer	Mark	Guidance
5	(a)		idea of separating (the components/compounds) idea of (identifying compounds) by comparison with a (spectral) database	2	ALLOW (identifies compounds) using fragmentation (patterns)/fragment ions (but IGNORE molecular ions) Note: Each marking point does not need to be linked to GC or MS (The question asks about GC-MS as a combined technique)
	(b)	(i)	54.2% of 118 OR 54.2/118 $\times 100=64 / 63.96$ (hence there are 4 oxygens) $118-64=54$ hence 4 carbon (48) and 6 hydrogen (6) \checkmark	2	IGNORE calculation that proves that $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$ has a molar mass of 118 (ie $12 \times 4+6 \times 1+16 \times 4$) ALLOW $64 / 118 \times 100=54.2 \%$ for 1 st mark IGNORE method using empirical formula ALLOW any reasonable working leading to 4C Note: $54.2(\%) \div 16$ would not get the 1 st mark but the answer could be used to get the 2nd mark
		(ii)	carboxyl group OR carboxylic acid \checkmark must be name (in question)	1	IGNORE working, e.g. O-H, C=O, $\mathrm{C}-\mathrm{O}$ on IR spectrum

Question			er	Mark	Guidance
5	(c)	(i)	Chemical shifts Any two peaks identified for 1 mark \checkmark peak at $\delta=0.8 \mathrm{ppm}$ due to $\mathrm{R}-\mathrm{CH} / \mathrm{CH}_{3} \mathrm{CH}$ peak at $\delta=3.4 \mathrm{ppm}$ due to $\mathrm{HC}-\mathrm{C}=\mathrm{O}$ peak at $\delta=11 \mathrm{ppm}$ due to $\mathrm{COOH} /$ carboxylic acid Splitting quartet shows adjacent CH_{3} OR 3 adjacent $\mathrm{Hs} \checkmark$ doublet shows adjacent CH OR 1 adjacent H \checkmark Identification	1	ANNOTATIONS MUST BE USED CHECK SPECTRUM for responses ANNOTATE with ‘^’ For peak at $(\delta=) 0.8(\mathrm{ppm})$, ALLOW doublet and vice versa For peak at $(\delta=) 3.4(\mathrm{ppm})$, ALLOW quartet ' and vice versa For peak at $(\delta=) 11(\mathrm{ppm})$, ALLOW singlet and vice versa ALLOW peak at $\delta=2.4 \mathrm{ppm}$ for peak at $\delta=3.4 \mathrm{ppm}$ ALLOW tolerance on δ values: $\pm 1 \mathrm{ppm}$ For quartet, ALLOW quadruplet ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)	$\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} / \mathrm{D} /$ It does not absorb OR does not give a peak \checkmark	1	ALLOW $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} /$ does not contain H ALLOW undeuterated solvents would absorb OR give peaks ALLOW responses in terms of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$ producing peaks \qquad but IGNORE number of peaks
		(iii)	TMS is the standard (for chemical shift measurements) \checkmark	1	ALLOW TMS is the reference OR TMS has $\delta=0(\mathrm{ppm})$ OR for calibration IGNORE unreactive, volatile, it gives a sharp peak
		(iv)	peak at $\delta=11.0$ (ppm) disappears \checkmark	1	ALLOW COOH (peak) disappears ALLOW OH (peak) disappears
			Total	12	

