Question			Answer	Mark	Guidance
1	(a)	(i)	Adsorption \checkmark (onto the stationary phase) Quality of Written Communication 'Adsorption' must be spelled correctly	1	ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once DO NOT ALLOW anything that begins with ab...
	(a)	(ii)	$0.2 \checkmark$	1	ALLOW any value in the range $0.1-0.3$ IGNORE significant figures DO NOT ALLOW fraction/percent as final answer
	(a)	(iii)	Spot may contain more than one compound/component \checkmark	1	ALLOW compounds have similar R_{f} values/adsorptions OR compounds have not (fully) separated OR B is spread over a large region OR compounds are similar IGNORE retention times
	(b)	(i)	GC separates the components/compounds AND MS is compared to a database/reference	1	ALLOW chromatography for GC ALLOW they have different retention times ALLOW MS analyses compounds/gives structural information/gives different mass spectra ALLOW (uses) fragmentation patterns/fragments/peaks/parts of the compound DO NOT ALLOW MS identifies compounds (in question) DO NOT ALLOW molecular ion alone $/ M_{\mathrm{r}}$ etc.
		(ii)	nerol and geraniol AND they are stereoisomers OR primary alcohols \checkmark	1	Compounds AND reason required for the mark ALLOW they are E / Z isomers OR cis-trans isomers ALLOW straight-chain alcohols OR unsaturated alcohols
		(iii)	stereoisomers have the same structural formula AND different 3D arrangements	1	BOTH points required for the mark ALLOW different arrangements in space
		(iv)		1	Circle must include the correct $\mathrm{C}=\mathrm{C}$ double bond AND must not extend further than the adjacent atoms in the main chain, ie limit is:

Question		er		Mark	Guidance
(b)	(v)			2	ALL THREE chiral centres required for 2 marks ANY TWO chiral centres required for 1 mark If more than three asterisks are shown, mark incorrect asterisk(s) first
(c)		Correctly calculates amount of myrcene = 34/136 OR 0.25 (mol) Correctly calculates 60% yield of menthol $=0.25 \times 60 / 100$ OR $0.15(\mathrm{~mol}) \checkmark$ Correctly calculates mass of menthol $=0.15 \times 156=23.4(\mathrm{~g}) \checkmark$		3	ANNOTATIONS MUST BE USED ALLOW amount of myrcene $\times 60 / 100$ ALLOW amount of menthol $\times 156$ ALLOW alternative approach based on reacting masses (using same ECF principles as above): correctly calculates mass of myrcene that could be obtained from 34 g myrcene: $\begin{aligned} & \text { mass }=34 \times 156 / 136=39(\mathrm{~g}) \\ & \times 156 \checkmark ; \div 136 \checkmark \end{aligned}$ 60% of $39 \mathrm{~g}=39 \times 60 / 100=23.4(\mathrm{~g}) \checkmark$ ALLOW final answer to 2 or more significant figures correctly rounded Correct answer of $23.4(\mathrm{~g})$ with no working scores all 3 marks
			Total	12	

(b)

		two marks if any two absorptions are identified correctly $\checkmark \checkmark$ one mark if any one absorption is identified correctly - peak ~ 3.7 (ppm) - bonded to an O - peak ~2.7 (ppm) - indicates it is next to a $\mathrm{C}=\mathrm{O}$ - peak ~1.2 (ppm) - bonded to other Cs OR part of a chain $\max =2 \text { marks }$ compound identified as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3} \checkmark \checkmark$ 2 marks compound identified as $\mathrm{CH}_{3} \mathrm{COOCH}\left(\mathrm{CH}_{3}\right)_{2}$ 1 mark		(ppm) ALLOW any two gets 2 marks, any one scores 1 mark $\mathrm{HC}-\mathrm{O}$ $\mathrm{R}-\mathrm{CH}$ 3.7 (ppm) 2.7 (ppm) 1.2 (ppm) ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O , multiplet to $\mathrm{C}=\mathrm{O}$ and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
		Total	9	

Question			Answer	Mark	Guidance
4	(a)		(Relative) solubility (in stationary phase) \checkmark	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B AND $\mathrm{M}^{+} /$molecular ion peak (at m / z) $=124$	1	ALLOW Mr = 124 IGNORE compound B because $\mathrm{m} / \mathrm{z}=124$ ALLOW C $\mathrm{H}_{8} \mathrm{O}_{2}{ }^{+}=124 \mathrm{OR} \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}=124$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to $\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{O}^{+}$ ALLOW peak at ($\mathrm{m} / \mathrm{z}=$) 109 due to loss of CH_{3} IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/ liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase/gas ALLOW compound interacts less with stationary phase/liquid OR compound interacts more with mobile phase/gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity

Quest		Answer	Mark	Guidance
(c)	(i)	reagent $=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ AND $\mathrm{H}_{2} \mathrm{SO}_{4}$ compound $\mathbf{C}=$	3	ALLOW acidified dichromate ALLOW H ${ }^{+} /$any acid IGNORE concentration of acid ALLOW $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ I(potassium OR sodium) dichromate((VI)) ALLOW acidified MnO_{4}^{-} ALLOW Tollens' reagent/ammoniacal silver nitrate IGNORE conditions ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups ALLOW esterification of phenol group

Question

Quest	Answer	Mark	Guidance
			ALLOW alternative sequences e.g. FIRST react all with $\mathrm{H}_{2} \mathrm{SO}_{4}$ AND $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ colour change with \mathbf{C} and \mathbf{D} eliminates E At least one correct equation and structure of one product from either reaction required for the second mark. NB several possible products for the oxidation of \mathbf{D} THEN react \mathbf{C} and \mathbf{D} with Tollens' distinguishes between \boldsymbol{C} and \boldsymbol{D}
(b)	 curly arrow from H^{-}to $\mathrm{C}^{(\delta+)}$ of correct $\mathrm{C}=\mathrm{O}$ group dipole correct AND curly arrow from $\mathrm{C}=\mathrm{O}$ bond to $\mathrm{O}^{(\overline{\delta-)}}$ correct intermediate with negative charge on O correct product	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous First curly arrow must come from either a lone pair on H or negative charge on H IF aldehyde reduced OR both carbonyls reduced DO NOT AWARD first mark (second, third and fourth marks can be awarded ECF) IGNORE lack of C-H if entirely skeletal IGNORE curly arrows in second stage Apply ecf to error in structure e.g. CH_{2} missing from the chain or $-\mathrm{COOH} /-\mathrm{COH}$ instead of -CHO IGNORE other products

