(Quest	tion	Answer	Mark	Guidance
1	(a)	(i)	Adsorption ✓ (onto the stationary phase)		ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once
			Quality of Written Communication 'Adsorption' must be spelled correctly	1	DO NOT ALLOW anything that begins with ab
	(a)	(ii)	0.2 ✓	1	ALLOW any value in the range 0.1 – 0.3 IGNORE significant figures DO NOT ALLOW fraction/percent as final answer
	(a)	(iii)	Spot may contain more than one compound/component ✓	1	ALLOW compounds have similar R_f values/adsorptions OR compounds have not (fully) separated OR B is spread over a large region OR compounds are similar IGNORE retention times
	(b)	(i)	GC separates the components/compounds AND		ALLOW chromatography for GC ALLOW they have different retention times
			MS is compared to a database/reference ✓	1	ALLOW MS analyses compounds/gives structural information/gives different mass spectra ALLOW (uses) fragmentation patterns/fragments/peaks/parts of the compound DO NOT ALLOW MS identifies compounds (in question) DO NOT ALLOW molecular ion alone/M _r etc.
		(ii)	nerol and geraniol AND		Compounds AND reason required for the mark
			they are stereoisomers OR primary alcohols ✓	1	ALLOW they are <i>E</i> / <i>Z</i> isomers OR <i>cis-trans</i> isomers ALLOW straight-chain alcohols OR unsaturated alcohols
		(iii)	stereoisomers have the same structural formula AND		BOTH points required for the mark
		/i/\	different 3D arrangements ✓	1	ALLOW different arrangements in space Circle must include the correct C=C double bond AND must
		(iv)		1	not extend further than the adjacent atoms in the main chain, ie limit is:

Question	er	Mark	Guidance
(b) (v)	* * * * * * * * * * * * * * * * * * *	2	ALL THREE chiral centres required for 2 marks ANY TWO chiral centres required for 1 mark If more than three asterisks are shown, mark incorrect asterisk(s) first
(c)	Correctly calculates amount of myrcene = 34/136 OR 0.25 (mol) ✓ Correctly calculates 60% yield of menthol = 0.25 × 60/100 OR 0.15 (mol) ✓ Correctly calculates mass of menthol = 0.15 × 156 = 23.4 (g) ✓	3	ALLOW amount of myrcene × 60/100 ALLOW amount of menthol × 156 ALLOW alternative approach based on reacting masses (using same ECF principles as above): correctly calculates mass of myrcene that could be obtained from 34 g myrcene: mass = 34 × 156/136 = 39 (g) × 156 ✓; ÷ 136 ✓ 60% of 39 g = 39 × 60/100 = 23.4 (g) ✓ ALLOW final answer to 2 or more significant figures correctly rounded Correct answer of 23.4 (g) with no working scores all 3 marks
	Total	12	

	Question	Answer	Mark	Guidance
2	(a)			ANNOTATIONS MUST BE USED
		a singlet for position 2 OR a singlet because it has no adjacent H's✓		ALLOW a response that implies a single peak OR 'no splitting'
		A triplet for positions 4 and 6		ALLOW a response that implies a splitting into three DO NOT ALLOW implications of more than one triplet
		OR a triplet because it has 2 adjacent H's ✓	3	ALLOW 'pentet'
		A quintet for position 5 OR a quintet because it has four adjacent H's ✓		OR a response that implies a splitting into five OR multiplet
				ALLOW 1 mark for singlet and triplet and quintet/pentet/multiplet with no identification of protons
				Any suggestion that the oxygens cause a splitting scores a maximum of 2 marks. • All 3 remaining splitting patterns correct 2 marks. • Any 2 correct 1 mark.
				 IF number labels for protons in diagram are not identified, ALLOW identification by chemical shifts for 2 marks max: singlet at 3.3–4.2 AND a triplet at 3.3–4.2 ✓ quintet/pentet/multiplet at 0.7–2.0 ✓
				Clear and unambiguous identification of the protons other than by position number should be credited, <i>ie</i> 'CH ₂ between two oxygens'
		Quality of Written Communication singlet OR triplet OR quintet OR pentet OR multiplet (see Guidance) must be spelled correctly at least once		

ANNOTATIONS MUST BE USED (b) ANY 5 marks plus correct structure (in box) Molecular ion/M⁺ peak at (m/z of) 106 ✓ **ALLOW** molecular mass **OR** relative molecular mass Fragment peak at 91 is $C_6H_4-CH_3^+/C_6H_5-CH_2^+\checkmark$ **ALLOW** C_6H_4 - CH_3/C_6H_5 - CH_2 **ALLOW** peak at 91 represents loss of CH₃ ALLOW correct structural OR displayed OR skeletal formula Molecular formula is C₈H₁₀ **ALLOW** combination of formulae as long as unambiguous (or implied, ie any one of the structures below) ✓ ALLOW a correct name eg a dimethylbenzene C_2H_5 ALL FOUR structures needed for 1 mark **ALLOW** correct names **ALLOW** NMR spectrum shows five different types of carbon ¹³C NMR spectrum shows 5 C environments ✓ **DO NOT ALLOW** 'NMR spectrum has five peaks' – the mark is for realising what the peaks show, not for just describing the spectrum Peak near 20 is a C attached at another carbon, C-C OR peaks at ~125–140 for aromatic Cs ✓

Question	er			Mark	Guidance
(b)	Number of peaks for o structures: Any 2 correct for 2 mand 1 correct for 1 mark CH ₃ CH ₃	rks √ √	atched to		
	4 peaks	3 peaks	6 peaks		ALLOW 'carbon environments' for peaks
	Correct structure show	vn: CH ₃ CH ₃ ✓		6	
			Total	9	

Qu	estior	Expected Answers	Marks	Additional Guidance
3	(a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
		¹³ C NMR – 2 marks (CH ₃) ₂ CHCH ₂ COOH has 4 peaks (due to 4 different C environments) ✓ (CH ₃) ₃ CCOOH has 3 peaks (due to 3 different C environments) ✓		ALLOW '13C NMR detects the number of/different C environments' for 1 ✓, suitable example for the 2nd mark
	(b)	splitting pattern explains any two in terms of 'n + 1 rule' for two marks ✓✓ Explains any one peak for 1 mark ✓	6	mark for correct ester if two splitting patterns are correctly analysed ignore the third
		singlet therefore adjacent C (if any) has no Hs		ALLOW singlet because next or bonded to an O
		multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs		ALLOW multiplet/heptet because next to 2 CH ₃ s
		doublet therefore adjacent C is bonded to 1H		ALLOW doublet because next to a CH
		must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks		
		chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ • peak ~3.7 (ppm) – bonded to an O • peak ~2.7 (ppm) – indicates it is next to a C=O • peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks		ALLOW any two gets 2 marks, any one scores 1 mark HC—O HC—C R—CH 3.7 (ppm) 2.7 (ppm) 1.2 (ppm) ALLOW peaks labelled on the spectrum ALLOW singlet must be bonded to O, multiplet to C=O and doublet to CH or R for both chemical shift marks if two chemical shifts are correctly identified IGNORE the third
compound identified as (CH ₃) ₂ CHCOOCH ₃ ✓✓ 2 marks compound identified as CH ₃ COOCH(CH ₃) ₂ ✓ 1 mark		
Total	9	

(Quest	ion	Answer	Mark	Guidance
4	(a)		(Relative) solubility (in stationary phase) ✓	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption
	(b)	(i)	Compound B AND M⁺/molecular ion peak (at <i>m</i> / <i>z</i>) = 124 ✓	1	ALLOW Mr = 124 IGNORE compound B because $m/z = 124$ ALLOW $C_7H_8O_2^+ = 124$ OR $C_7H_8O_2 = 124$ ALLOW peak at $(m/z =) 109$ due to $HOC_6H_4O^+$ ALLOW peak at $(m/z =) 109$ due to loss of CH_3 IGNORE reference to other peaks in the spectrum
		(ii)	Compound (B) is less soluble in the stationary phase/ liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase/gas ALLOW compound interacts less with stationary phase/liquid OR compound interacts more with mobile phase/gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity

Question	Answer	Mark	Guidance
(c) (i)	reagent = $K_2Cr_2O_7$ AND H_2SO_4	3	ALLOW acidified dichromate
			ALLOW H⁺/any acid
			IGNORE concentration of acid
			ALLOW Na ₂ Cr ₂ O ₇ /Cr ₂ O ₇ ²⁻ /(potassium OR sodium) dichromate((VI))
			ALLOW acidified MnO ₄ -
			ALLOW Tollens' reagent/ammoniacal silver nitrate
			IGNORE conditions
	compound C = CH ₂ OH OH ester = OH OH OH		ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW ECF from incorrect compound C Check positions of OH groups ALLOW esterification of phenol group CH ₂ OH

Question	Answer	Mark	Guidance
(ii)	curly arrow from H^- to $C^{\delta+}$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC curly arrow must come from lone pair on H or negative charge on H
	dipole AND curly arrow from C=O bond to O ✓		curly arrow must come from the bond, not the carbon atom
	correct intermediate AND curly arrow to H ⁺ ✓		curly arrow must come from lone pair on O or negative charge on O and go to H or positive charge on H
			Where circles have been placed round charges, this is for clarity only and does not indicate a requirement
			ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous
	OH OH		ALLOW for second stage
	CH ₂ OH OH		ОН
			IF H ₂ O is used it MUST show the curly arrow from the negative charge or lone pair on the oxygen atom of the intermediate to H in H ₂ O AND from the O—H bond to the O in H ₂ O. Dipole not required on water molecule
			Penalise missing –OH on intermediate only
			IGNORE product – already given credit in part (i)

Questi	on	Answer	Mark	Guidance
(d)		OCH ₃ OH + 2 Br ₂	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring
		Total	10	

Quest	ion	Answer	Mark	Guidance
	ion	FIRST react all with Tollens' reagent AND silver mirror/ppt/solid (formed) with compound D OR with Fehling's/Benedict's solutions AND (brick-red/orange) solid/precipitate (formed) with compound D NOTE: eliminates D THEN react C and E with H ₂ SO ₄ /H ⁺ AND K ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ² /Na ₂ Cr ₂ O ₇ AND colour change OR green colour with compound C OR no change OR no reaction OR no green colour with compound E	Mark 4	Guidance ALLOW ammonia + silver nitrate for reagent ALLOW black solid/ppt ALLOW 'the aldehyde gives a silver mirror' ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW molecular formulae for organic structures IGNORE all references to 2,4-dinitrophenylhydrazine/Brady's ACCEPT acidified dichromate ALLOW blue/green blue IGNORE equation for oxidation of D ALLOW equation for partial oxidation
		compound E ✓ OH + 2[O] → OH + 2O		ALLOW equation for partial oxidation
	1	(a)	FIRST react all with Tollens' reagent AND silver mirror/ppt/solid (formed) with compound D OR with Fehling's/Benedict's solutions AND (brick-red/orange) solid/precipitate (formed) with compound D NOTE: eliminates D THEN react C and E with H ₂ SO ₄ /H ⁺ AND K ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ /Na ₂ Cr ₂ O ₇ AND colour change OR green colour with compound C OR no change OR no reaction OR no green colour with compound E	FIRST react all with Tollens' reagent AND silver mirror/ppt/solid (formed) with compound D OR with Fehling's/Benedict's solutions AND (brick-red/orange) solid/precipitate (formed) with compound D NOTE: eliminates D THEN react C and E with H ₂ SO ₄ /H ⁺ AND K ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ² -/Na ₂ Cr ₂ O ₇ AND colour change OR green colour with compound C OR no change OR no reaction OR no green colour with compound E

Questi	on Answer	Mark	Guidance
			ALLOW alternative sequences
			e.g. FIRST react all with H ₂ SO ₄ AND K ₂ Cr ₂ O ₇
			colour change with C and D eliminates E
			At least one correct equation and structure of one product from either reaction required for the second mark. NB several possible products for the oxidation of D
			THEN react C and D with Tollens' distinguishes between C and D
(b)	He	4	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
	δ.		First curly arrow must come from either a lone pair on H or negative charge on H
	∑ 0 5-		IF aldehyde reduced OR both carbonyls reduced DO NOT AWARD first mark
	curly arrow from H^- to $C^{(\delta^+)}$ of correct C=O group		(second, third and fourth marks can be awarded ECF)
	dipole correct AND curly arrow from C=O bond to $O^{(\delta-)}$		IGNORE lack of C—H if entirely skeletal
	H C O O		IGNORE curly arrows in second stage
	correct intermediate with negative charge on O ✓		Apply ecf to error in structure e.g. CH ₂ missing from the chain or –COOH/-COH instead of –CHO
	OH OH		IGNORE other products
	correct product ✓		

Question	Answer				Mark	Guidance
(c)						
	Compound	С	D	E		
	Number of peaks	5	5	4		
	all correct ✓					
(d) (i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW C ₂ H ₅ CHO and CH ₃ CHO
(d) (ii)					1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
				Total	13	