1. Xe has a bigger atomic radius OR Xe has more shells

ALLOW Xe has more energy levels ALLOW Xe has electrons in higher energy level ALLOW Xe has electrons further from nucleus IGNORE Xe has more orbitals OR more sub-shells DO NOT ALLOW 'different shell' or 'new shell'

Xe has more shielding
ALLOW More screening
There must be a clear comparison ie more shielding $\boldsymbol{O R}$ increased shielding.
i.e. DO NOT ALLOW Xe 'has shielding'

ALLOW Xe has more electron repulsion from inner shells
The nuclear attraction decreases
OR Outermost electrons of Xe experience less attraction (to nucleus)
OR Increased shielding / distance outweighs the increased nuclear charge
ORA throughout
ALLOW Xe has less nuclear pull
IGNORE Xe has less effective nuclear charge
DO NOT ALLOW nuclear charge for nuclear attraction
2. $3 d^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5} \checkmark$

ALLOW $4 s^{2} 3 d^{10} 4 p^{5}$
ALLOW subscripts or $3 D^{10}$
ALLOW answers with $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ appearing twice
3. (i) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$

ALLOW subscripts
(ii)

'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols)

IGNORE inner shells
IGNORE '+' sign BUT DO NOT ALLOW a '-' sign.
Brackets and circles not required
(iii) tetrahedral
109.5°
ALLOW 109-110
(iv) ions OR electrons cannot move in a solid ions can move OR are mobile in solution

ALLOW ions can move in liquid
DO NOT ALLOW ions can move when molten
ALLOW 1 mark for:
'Ions can only move in solution'
4. the energy required to remove one electron \checkmark from each
atom in one mole \checkmark of gaseous atoms
ALLOW 3 marks for:
the energy required to remove one mole of electrons \checkmark
from one mole of atoms
atoms in the gaseous state
If no definition, ALLOW one mark for the equation below,
including state symbols.
$X(g) \rightarrow X^{+}(g)+e^{-} / X(g)-e^{-} \rightarrow X^{+}(g)$
ALLOW e for electron
IGNORE state symbol for electron
5.
(i) $\mathrm{O}^{+}(\mathrm{g}) \rightarrow \mathrm{O}^{2+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$ answer must have state symbols ALLOW e for electron ALLOW $O^{+}(g)-e^{-} \rightarrow O^{2+}(g)$ DO NOT ALLOW $O^{+}(g)+e^{-} \rightarrow O^{2+}(g)+2 e^{-}$ IGNORE state symbol for electron
(ii) the O^{+}ion, is smaller than the O atom OR the electron repulsion/shielding is smaller OR
the proton : electron ratio in the $2+$ ion is greater than in the $1+$ ion

ALLOW the outer electrons in an O^{+}ion are closer to the nucleus than an O atom
DO NOT ALLOW 'removed from next shell down'
6. (i) number of protons (in the nucleus)

ALLOW proton number
ALLOW number of protons in an atom
IGNORE reference to electrons
(ii) $\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2}$

ALLOW $1 s^{2}$ written twice
ALLOW subscripts
ALLOW $4 s^{2}$ before $3 d^{2+}$
(iii) $\mathrm{Mn} /$ manganese and d \checkmark

ALLOW D
7. (i) atoms of the same element with different numbers of neutrons/different masses (1)
(ii) ${ }^{79} \mathrm{Br} 35$ protons, 44 neutrons, 35 electrons (1)
${ }^{81} \mathrm{Br} 35$ protons, 46 neutrons, 35 electrons (1)
(iii) $\quad\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{5}$ (1)
8. (a)

1, 2 or 3 p orbitals are $O K$

(b) d orbital $2 \checkmark$
p sub-shell $6 \checkmark$
3rd shell $18 \checkmark \quad 3$
(i)

(ii)

2 s and 2 p labels \checkmark Ignore any superscripted numbers. 8 electrons in correct levels with arrows correctly shown
9. (i) Energy change when each atom in 1 mole of gaseous atoms loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).
(ii) $\mathrm{O}^{2+}(\mathrm{g}) \rightarrow \mathrm{O}^{3+}(\mathrm{g})+\mathrm{e}^{-}$

1 mark for correct species; 1 mark for state symbols
No charge required on electron.
Ignore (g) on e
(iii) Large difference between 6th and 7th IEs \checkmark
marking a different shell (closer to nucleus)
allow 'inner shells'/new shell/full shell/first shell
marking points independent.
not sub-shell or orbital
10. (i)

	protons	neutrons	electrons	
${ }^{25} \mathrm{Mg}$	12	13	12	\checkmark
${ }^{26} \mathrm{Mg}$	12	14	12	\checkmark

(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \checkmark$
$24 \times 78.60 / 100+25 \times 10.11 / 100+26 \times 11.29 / 100 \checkmark$
(iii) $=24.33 \checkmark$ (calc value: 24.3269. This scores one mark)
24.32 with no working, award 1 mark only.
24.3 with no working, no marks (Periodic Table value) 2
11. (a) Energy change when each atom in 1 mole \checkmark
of gaseous atoms \checkmark
loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).
(b) From $\mathrm{Li} \rightarrow \mathrm{N}$, ionisation energy increases \checkmark number of protons/nuclear charge increases \checkmark nuclear attraction increases / shell drawn in by increased nuclear charge/ atomic radius decreases \checkmark across period, electrons added to same shell \checkmark

Not same subshell
From $\mathrm{Be} \rightarrow \mathrm{B}$, ionisation energy decreases \checkmark
for B, electron is removed from a p sub-shell/p orbital/different sub-shell \checkmark
which has a higher energy \checkmark
watch for distinction between nuclear attraction and
nuclear charge in candidates' scripts.
Also watch for confusion between shell and subshell.
Al $\sqrt{ }$
Sharp rise in successive ionisation energy between 3 rd and 4th IE \checkmark
marking a change to a new or different shell / there are 3
electrons in the outer shell \checkmark
mention of 'orbital' or 'sub-shell cancels 'shell mark' Each marking point for $A l$ is independent

QoWC: links together two pieces of information correctly within two of the sections below:

1. General trend across period
2. Be to B

Successive ionisation energies \checkmark
12. (i) $\mathrm{Ca}^{+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{e}^{-}$

Equation with correct charges and 1 electron lost \checkmark
state symbols
'-' not required on 'e' 2
(ii) same number of protons or same nuclear charge attracting
less electrons/
electron removed from an ion/
less electron-electron repulsion (not less shielding)/
ion is smaller \checkmark
(iii) atomic radii of $\mathrm{Sr}>$ atomic radii of $\mathrm{Ca} /$

Sr has electrons in shell further from nucleus than $\mathrm{Ca} /$
Sr has electrons in a higher energy level/
Sr has more shells
Therefore less attraction
Sr has more shielding than Ca
('more' is essential)
increased nuclear charge is outweighed / despite increased nuclear
chargeby at least one of the factors above
13. $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
14. (i) Energy change when each atom in 1 mole \checkmark of gaseous atoms loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).
(ii) increasing nuclear charge/number of protons electrons experience greater attraction or pull / atomic radius decreases / electrons added to same shell /same or similar shielding
(iii) In B, electron being removed is at a higher energy /

In Be , electron being removed is at a lower energy
An s electron is lost in Be AND a p electron is lost in B
15. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{2} 4 s^{2} \checkmark$
16. (i) First \checkmark ionisation (energy)
$\mathrm{Ra}(\mathrm{g}) \rightarrow \mathrm{Ra}^{+}(\mathrm{g})+\mathrm{e}^{-} \checkmark \checkmark$
1 mark for equation
1 mark for state symbols
'-' not required on 'e'
(ii) atomic radii of $\mathrm{Ra}>$ atomic radii of Ca /

Ra has electrons in shell further from nucleus than $\mathrm{Ca} /$
Ra has more shells
Ra has more shielding than $\mathrm{Ca} \checkmark$
: 'more' is essential
Ra electron held less tightly/less attraction on electron $\checkmark \quad 3$
17. (i) $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} \ldots \ldots \ldots . .3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{5} \checkmark \checkmark \quad 2$

Award 1 mark for p^{5}.
(ii) Highest energy sub-shell/sub-shell/being filled is the p sub-shell/outer electrons are in ap (sub-shell/orbital/shell)
18. (a) Energy change when each atom in 1 mole
of gaseous atoms \checkmark
loses an electron \checkmark (to form 1 mole of gaseous $1+$ ions).
(b) increasing nuclear charge/number of protons \checkmark
electrons experience greater attraction or pull/atomic radius decreases/electrons added to same shel1/same or similar shielding 2

