Q	uesti	on	Answer	Mark	Guidance	
1	(a)		$2AI + 3F_2 \rightarrow 2AIF_3 \checkmark$	1	ALLOW multiples IGNORE state symbols	
	(b)	(i)	Repeating pattern ✓ of oppositely charged ions ✓	2	 ALLOW 'regular' OR 'alternating' OR 'uniform (arrangement)' for 'repeating pattern' ALLOW positive and negative ions OR aluminium ions and fluoride ions ALLOW oppositely charged ions from a labelled diagram 	
		(ii)	$\begin{bmatrix} \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} \end{bmatrix}^{3^{+}}$ $\begin{bmatrix} \mathbf{x} & \mathbf{F} & \mathbf{e} \\ \mathbf{x} & \mathbf{F} & \mathbf{e} \end{bmatrix}^{-}$ $\begin{bmatrix} \mathbf{x} & \mathbf{F} & \mathbf{e} \\ \mathbf{x} & \mathbf{F} & \mathbf{e} \end{bmatrix}^{-}$ Al with 8 (or no) outermost electrons $\begin{bmatrix} \mathbf{AND} \\ 3 & \mathbf{x} & \mathbf{fluoride} & (\text{ions}) & \text{with } 'dot-and-cross' & \text{outermost octet } \checkmark$ Correct charges \checkmark	2	For first mark: If 8 electrons are shown in the cation then the 'extra' electron in the anion must match the symbol chosen for the electrons in the cation IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one F is drawn. ALLOW one mark if incorrect symbol is the only error, unless ECF from 2(a) in which both marks are available DO NOT ALLOW any marks for BF ₃ ALLOW 3[F ⁻] 3[F] ⁻ [F ⁻] ₃ (brackets not required) DO NOT ALLOW [F ₃] ⁻ [F ₃] ³⁻ [3F] ³⁻ [F] ₃ ⁻	
	(c)	(i)	A shared pair of electrons.	1		
	(c)	(ii)	Br ● Br ● Br ★ B ★ Br ● ● ● ● ●	1		

Question	Answer	Mark	Guidance
(d)	<i>Conductivity of At mark</i> M1: Aluminium conducts in solid and molten states ✓	5	ALLOW 'carries charge' for conducts IGNORE 'charge carriers' for 'electrons' or 'ions' for M2, M3 and M4.
	Reason for conductivity of Al mark M2: Aluminium has delocalised electrons ✓		Quality of written communication: 'delocalis(z)ed' spelled correctly and used in context for the second marking point. DO NOT ALLOW M2 if incorrect bonding is seen for A <i>l</i> DO NOT ALLOW 'ions move' for solid A <i>l</i> . IGNORE 'ions move' for molten A <i>l</i> .
	Conductivity and reason for molten AlF ₃ mark M3: Aluminium fluoride conducts when molten AND because it has mobile ions ✓		IGNORE references to 'aqueous' AlF_3 for M3 IGNORE 'delocalised ions' OR 'free ions' for mobile ions in M3 DO NOT ALLOW M3 if incorrect bonding is seen in AlF_3 DO NOT ALLOW any mention of electrons moving for M3 DO NOT ALLOW suggestion that it is only positive or only negative ions moving for M3 For conductivity parts of M3 + M4 ALLOW ' AlF_3 only conducts when molten'
	Conductivity and reason for solid AlF ₃ mark M4: Aluminium fluoride does not conduct when solid AND Solid aluminium fluoride has ions which are fixed (in position) OR ions are held (in position) OR ions are not mobile AND In an (ionic) lattice OR (ionic) structure OR by (ionic) bonds ✓		ALLOW Solid AT_{F_3} is a poor conductor for M4 ALLOW second and third statements to be unlinked in separate sentences for M4 IGNORE 'there are no delocalised electrons' for M4 DO NOT ALLOW M4 if incorrect bonding is seen in AT_{F_3} Lattice OR structure OR ionic bonds can be seen anywhere in relation to AT_{F_3} .
			ALLOW Solid BBr ₃ is a poor conductor for M5 ALLOW electrons are fixed in position OR used in bonds

Q	uesti	on	Answer	Mark	Guidance
			Conductivity and reason for BBr ₃ mark M5 Boron tribromide does not conduct in solid and molten states AND Boron tribromide has no mobile electrons OR no (mobile) ions OR no mobile charge carriers OR no mobile charged particles ✓		IGNORE 'there are no delocalised electrons' OR 'there are no free electrons' for M5 DO NOT ALLOW M5 if incorrect bonding is seen in BBr ₃ eg 'ions are fixed in position' ALLOW 'no (free) ions'
1	(e)	(i)	$Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-1} \checkmark$	1	State symbols required (ignore states on electrons) ALLOW $Al^{2+}(g) - e^{-} \rightarrow Al^{3+}(g)$ ALLOW e for e^{-}
		(ii)	All (thirteen) ionisation energies show an increase ✓ The two largest increases are between the third and fourth AND the eleventh and twelfth ionisation energies ✓	2	IGNORE line if drawn IGNORE 0 if included ALLOW one mark for three lines (no crosses) showing an increase between: first and third; fourth and eleventh; twelfth and thirteenth AND Largest increases between each line ALLOW crosses outside grid
			Total	15	

Question	Answer	Mark	Guidance	
Question 2 (a)	Answer The attraction (between nuclei and outermost electrons) increases (across the period) AND The nuclear charge increases OR The number of protons increase ✓ (Outer) electrons are in the same shell OR (Outer) electrons experience similar shielding OR Same number of shells OR Atomic radius decreases ✓	2 2	Guidance ALLOW There is no change in shielding But DO NOT ALLOW 'there is no shielding' DO NOT ALLOW electrons are at the same distance	

Answer	Mark	Guidance
	5	<i>Quality of written communication:</i> 'molecule(s)' or 'intermolecular' spelled correctly once and used in context for the third marking point.
<i>M1 NH</i> ₃ forces mark NH ₃ has hydrogen bonding ✓		ALLOW H-bonding for hydrogen bonding IGNORE van der Waals' forces AND permanent dipoles in M1 IGNORE covalent bonds for M1 AND M2
<i>M</i> 2 F_2 AND Br_2 forces mark F_2 AND Br_2 have van der Waals' (forces) \checkmark		ALLOW, for van der Waal's: vdWs OR induced dipole temporary OR instantaneous dipole (-dipole) forces ALLOW for forces: attractions OR interactions;
		DO NOT ALLOW M3, M4 or M5 if covalent OR ionic bonds are the forces between the particles in that mark
M3 Type of particle mark Forces OR attractions are between molecules OR are intermolecular for ammonia AND Forces OR attractions are between molecules OR are intermolecular for fluorine OR for bromine ✓		M3 can be seen anywhere eg in M1 NH ₃ has hydrogen bonding between molecules AND the intermolecular force in Br_2 is stronger than that of F_2 eg a generic statement such as 'boiling point of these substances is determined by strength of <i>intermolecular</i> <i>bonding</i> ' eg 'All these <i>molecules</i> are <i>held</i> together by weak forces'
	 <i>M1 NH</i>₃ forces mark NH₃ has hydrogen bonding ✓ <i>M2 F</i>₂ AND <i>Br</i>₂ forces mark F₂ AND <i>Br</i>₂ have van der Waals' (forces) ✓ <i>M3 Type of particle mark</i> Forces OR attractions are between molecules OR are intermolecular for ammonia AND Forces OR attractions are between molecules OR are 	5 M1 NH₃ forces mark NH₃ has hydrogen bonding ✓ M2 F₂ AND Br₂ forces mark F₂ AND Br₂ have van der Waals' (forces) ✓ M3 Type of particle mark Forces OR attractions are between molecules OR are intermolecular for ammonia AND Forces OR attractions are between molecules OR are

Question	Answer	Mark	Guidance
	<i>M4</i> Br_2 / F_2 comparison mark The van der Waals' forces in Br_2 are greater than in F_2 AND Because bromine has more electrons than fluorine \checkmark		If correct force is given in M2 ALLOW , for M4, 'intermolecular force in Br_2 is stronger than that in F_2 ' ALLOW more van der Waals' for greater van der Waals' ALLOW more shells of electrons
	<i>M5</i> $Br_2 / NH_3 / F_2$ comparison mark The van der Waals' forces in Br_2 are greater than hydrogen bonding in NH ₃ AND hydrogen bonding in NH ₃ is stronger than van der Waals' forces in $F_2 \checkmark$		 IGNORE 'permanent dipoles' in NH₃ for M5 if quoted in addition to hydrogen bonding If correct force is given in M1 AND M2 ALLOW, for M5, 'intermolecular force in Br₂ is stronger than that in NH₃' AND 'intermolecular force in NH₃ is stronger than that in F₂' If incorrect intermolecular force is given in M1 OR M2 ALLOW this as ECF for M5 but DO NOT ALLOW if the comparison is based only on van der Waals' forces Eg DO NOT ALLOW the van der Waals' forces in bromine are stronger than those in ammonia which in turn are stronger than those in fluorine
	Total	7	

Qı	uestic	on	Answer	Mark	Guidance
3	(a)	(i)	The Dipole Mark At least one H^{δ^+} AND one O^{δ^-} shown correctly on each water molecule (see diagram) \checkmark Hydrogen bond H^{δ^+} \bullet^{δ^-} H^{δ^+} \bullet^{δ^-} H^{δ^+} H^{δ^+} \bullet^{δ^-} H^{δ^+} H^{δ^+} H^{δ^+}	2	DO NOT ALLOW H ^{δ-} OR O ^{δ+} IGNORE lone pairs for first marking point
			<i>The Hydrogen bonding Mark</i> One Hydrogen bond between H in one water molecule and a lone pair of O in an adjacent water molecule ✓		All Hydrogen bonds must hit a lone pair Hydrogen bond does NOT need to be labelled but it must be different from the covalent bond if it is not labelled ALLOW H-bond as label ALLOW only one lone pair on O atom ALLOW additional, correctly drawn Hydrogen bonded water molecules with correct dipoles DO NOT ALLOW more than two lone pairs on O atom

Qı	uestic	on	Answer	Mark	Guidance
3	(a)	(ii)	Property 1 Ice is less dense than water ✓ Explanation 1 The molecules in ice are held apart by hydrogen bonds ✓ OR ice has an open lattice OR structure	4	ALLOW ice floats (on water) ALLOW ice contracts when it melts
			Property 2 Ice has a relatively high melting point ✓ Explanation 2 Hydrogen bonds are relatively strong OR Hydrogen bonds are stronger (than other intermolecular attractions or forces) OR More energy is needed to overcome hydrogen bonding		 ALLOW ice (water) has a higher melting point than expected OR predicted ALLOW other expressions which convey that the melting point is anomalously high eg 'lce has an unusually high melting point' IGNORE boiling point IGNORE the following unqualified statements 'lce has a higher melting point' or 'lce has a high melting point' IGNORE references to surface tension as a property IGNORE explanations of surface tension ALLOW hydrogen bonds are the strongest intermolecular attraction or force DO NOT ALLOW 'hydrogen bonds are strong' but ALLOW this as part of a qualified statement (eg 'hydrogen bonds are strong compared with weak van der Waals forces')
3	(b)		$\begin{array}{c} \mathbf{x}^{\mathbf{X}} & \mathbf{x} \\ \mathbf{x}_{\mathbf{X}} & \mathbf{O} & \mathbf{x} \\ \mathbf{x}_{\mathbf{X}} & \mathbf{x}_{\mathbf{X}} \end{array}$	1	Lone pairs on O must be seen Lone pairs may be seen as 4 individual electrons ALLOW correct use of three different symbols

uestion	Answer	Mark	Guidance
(c)	Giant covalent (lattice) ✓	1	ALLOW 'Giant lattice with covalent bonds' ALLOW 'Giant covalent bonds' IGNORE ' Giant molecular' or 'macromolecular' DO NOT ALLOW 'Covalent bonds between molecules'
(d)		5	Quality of written communication 'delocalis(z)ed spelled correctly once and used in context for second marking point
	Conductivity of Na mark M1: Sodium conducts in the solid and molten states ✓ Reason for conductivity of Na mark		ALLOW 'carries charge' for conducts for M1 and M3 IGNORE 'charge carriers' for electrons OR ions for M2, M4 and M5
	M2: Sodium has delocalised electrons (in both solid and liquid state) \checkmark		DO NOT ALLOW M2 if incorrect bonding is seen for Na DO NOT ALLOW ions move for solid Na for M2 IGNORE ions move for molten Na for M2
	Conductivity of Na ₂ O mark M3: Na ₂ O conducts when molten and not when solid \checkmark		ALLOW solid Na ₂ O is a poor conductor for M3 IGNORE references to aqueous Na ₂ O for M3
	Reason for conductivity of Na₂O marks M4: Molten Na₂O has ions which are mobile ✓		IGNORE references to aqueous Na ₂ O for M4 IGNORE 'delocalised ions' OR 'free ions' for 'mobile ions' fo M4 DO NOT ALLOW M4 AND M5 if incorrect bonding is seen in
	M5: Solid Na₂O has ions which are fixed (in position) OR ions are held (in position) OR ions are not mobile AND in an (ionic) lattice OR structure ✓		Na ₂ O DO NOT ALLOW any mention of electrons moving for M4 DO NOT ALLOW suggestion that it is only positive or only negative ions move for M4 IGNORE 'there are no delocalised electrons' for M5 ALLOW first and second statements of M5 to be unlinked in separate sentences ALLOW 'ions fixed in position by ionic bonds' for M5
	Total	13	

Qu	lesti	on	Answer	Marks	Guidance
	uesti (a)	on (i)	P in P ₄ is 0 AND in PH ₃ is -3 AND in NaH ₂ PO ₂ is (+)1 \checkmark Phosphorus has been oxidised (from 0) to +1 \checkmark	Marks 3	 FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED ALLOW oxidation states written above the equation if not seen in the text BUT IGNORE oxidation states written above the equation if seen in the text ALLOW 3– AND 1+ DO NOT ALLOW ions DO NOT ALLOW P^{3–} in PH₃ OR P⁺ in NaH₂PO₂ DO NOT ALLOW phosphide or phosphine or phosphate in place of phosphorus
			Phosphorus has been reduced (from 0) to −3 ✓		 ALLOW P or P₄ for phosphorus ALLOW ECF for the second and third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg P = 0 and -3 and +2 instead of 0 and -3 and +1. IGNORE references to electron loss / gain If correct oxidation numbers are seen ALLOW second AND third marking points for: 'Phosphorus is oxidised to form NaH₂PO₂' AND 'Phosphorus is reduced to form PH₃' IF neither second and third marks have been awarded ALLOW for ONE mark: Phosphorus has been both oxidised and reduced OR Phosphorus's oxidation number has increased and decreased

Question	Answer	Marks	Guidance	
(a) (ii	First check the answer on the answer line. If answer = 360 (cm^3) award 2 marks Correctly calculates amount of P ₄ = $1.86/124.0$ = $0.015(0) \text{ mol } \checkmark$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below	
	Correctly calculates volume of $PH_3 = 0.015(0) \times 24000 = 360 \text{ (cm}^3) \checkmark$		ALLOW ECF for wrong amount of $P_4 \times 24000$ for second mark ALLOW one mark for (1.86/31.0) x 24000 = 1440	
			DO NOT ALLOW 2 nd mark for 1.86 x 24000 = 44640 ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2.	
(b)	$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O\checkmark$	1	ALLOW correct multiples IGNORE state symbols	
(c) (i)	The hydrogen ions OR H ⁺ OR protons (of phosphoric acid) are replaced by sodium ions OR Na ⁺ ✓	1	 ALLOW Na ions OR positive ions replace H ions OR metal ions have replaced hydrogen ions OR protons DO NOT ALLOW Na replaces H. Ions are key in either word or symbol form. DO NOT ALLOW incorrect charge on Na ions (eg Na²⁺) 	
(ii	Correctly calculates 0.100 x 15 / 1000 = 1.5(0) x 10 ⁻³ OR 0.0015(0) ✓	1		
(iii	0 22.5 ✓	1	ALLOW ECF from (ii) Answer from (ii) x (3/0.2) x 1000	
(d) (i)	hydrogen bonding ✓ Permanent dipole(–dipole interactions) ✓	2		

C	Question		Answer	Marks	Guidance
	(d)	(ii)	the intermolecular forces are weaker in PH ₃ ✓	1	 ALLOW the energy needed to overcome the intermolecular forces in NH₃ is greater Check table in part (i) IF NH₃ = hydrogen bonds AND PH₃ = permanent dipoles OR van der Waal's forces; ALLOW 'Hydrogen Bonds are stronger' ORA IF NH₃ = permanent dipoles AND PH₃ = van der Waal's forces; ALLOW 'permanent dipoles are stronger' ORA IF NH₃ = permanent dipoles are stronger' ORA IF NH₃ = permanent dipoles are stronger ORA IF NH₃ = permanent dipoles are stronger ORA IF NH₃ = permanent dipoles are stronger ORA IF NH₃ = permanent dipoles AND PH₃ = permanent dipoles; ALLOW 'permanent dipoles are stronger in NH₃' ORA DO NOT ALLOW PH₃ has weaker vdW's than NH₃ DO NOT ALLOW NH₃ has stronger hydrogen bonds than PH₃ DO NOT ALLOW implication that covalent bonds are broken
	(e)	(i)	Both electrons have been donated by one atom ✓	1	ALLOW 'they' for electrons IGNORE elements for atom DO NOT ALLOW 'transfer' in place of 'donated' DO NOT ALLOW more than one electron pair is donated

Question	Answer	Marks	Guidance	
(e) (ii)	H F: * * * * * * * * * * * * * * * * * * *	2	 Must be 'dot-and-cross', but ALLOW other symbols for electrons of third and fourth atoms eg △, +, o, etc Circles for outer shells are not needed IGNORE inner shells IGNORE use of charges Non-bonding electrons of F do not need to be seen as pairs IGNORE dative-covalent arrows from N to B, but DO NOT ALLOW arrow from B to N DO NOT ALLOW two separate molecules for first mark DO NOT ALLOW dative covalent bond mark if electron pair matches the B electrons ie to be correct the dative pair must be the same symbol as non-bonding electrons on F atoms if only two symbols are used DO NOT ALLOW dative covalent bond mark if F atoms have no non-bonding electrons UNLESS B has different electron symbol to N or H atoms 	
(iii)	$BF_3 = 120(\circ) \checkmark$ $H_3NBF_3 = 109.5(\circ) \checkmark$	2	ALLOW 109–110(°) for H ₃ NBF ₃	

Questi	on	Answer		Guidance	
(e)	(iv)	 (N in) NH₃ has three bonding pairs and one lone pair of electrons ✓ 	3	ALLOW 'bonds' for 'bonding pairs'	
		(N in) H ₃ NBF ₃ has four bonding pairs (and no lone pairs) of electrons OR			
		Lone pair on N now becomes bonding pair \checkmark			
		Lone pair of electrons repels more than bonding pairs \checkmark		IGNORE 'electrons repel' DO NOT ALLOW 'atoms repel'	
		Total	20		