Question			er	Mark	Guidance
1	(a)		$2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW NaOCl IGNORE state symbols
	(b)	(i)	Sodium chlorate(V) \checkmark	1	ALLOW sodium chlorate V DO NOT ALLOW sodium chlorate 5
		(ii)	Cl in NaClO_{3} is $(+) 5$ AND Cl in NaClO_{4} is $(+) 7$ AND Cl in NaCl is -1 Chlorine has been both oxidised and reduced OR The oxidation number of chlorine has increased AND decreased Chlorine has been oxidised from (+)5 to (+)7 AND chlorine has been reduced from (+)5 to -1 \checkmark (These points would secure marking points 2 and 3) $4 \mathrm{NaClO}_{3} \rightarrow 3 \mathrm{NaClO}_{4}+\mathrm{NaCl}$ This diagram gets all 3 marks reduction	1 1	USE annotations with ticks, crosses, con, ECF, etc for this part. ALLOW 5+, 7+ 1- Look for oxidation numbers seen above equation. DO NOT ALLOW Cl^{-}in NaCl The second and third marking points must refer to chlorine ALLOW 'it' for 'chlorine' if oxidation numbers of chlorine are given ALLOW Cl for 'chlorine' DO NOT ALLOW Cl_{2} for 'chlorine' ALLOW 'correct' references to oxidation and reduction even if based on incorrect oxidation numbers of chlorine IGNORE references to electron loss / gain if correct. DO NOT ALLOW 3rd mark for reference to electron loss/gain If oxidation numbers are correct, ALLOW 1 mark for 'chlorine is oxidised to form $\mathrm{NaClO}_{4}{ }^{\text {' }}$ ALLOW 1 mark for 'chlorine is reduced to form NaCl ' ALLOW one mark for 'disproportionation is when a species is both oxidised and reduced' whether or not chlorine is mentioned
	(c)	(i)	Chlorinated hydrocarbons are carcinogens OR toxic OR Chlorine is toxic OR poisonous \checkmark (Chlorine) kills bacteria OR 'kills germs' 'kills micro-organisms' OR 'makes water safe to drink' OR 'sterilises water' OR 'disinfects' \checkmark	1 1	ALLOW $\mathrm{CH}_{3} \mathrm{Cl}$ for 'chlorinated hydrocarbons' IGNORE 'harmful' IGNORE 'carcinogenic' for chlorine DO NOT ALLOW 'antiseptic' ALLOW 'to make water potable' ALLOW 'removes' for 'kills' IGNORE 'virus' IGNORE 'purifies water' IGNORE 'cleans water'

Question			er	Mark	Guidance
1	(c)	(ii)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of $\mathrm{CH}_{3} \mathrm{Cl}$ AND lone pairs correct on $\mathrm{Cl} \checkmark$	1	Must be 'dot-and cross' ALLOW different symbol for third 'type' of electron Circles for outer shells not needed IGNORE inner shells Non-bonding electrons of chlorine do not need to be shown as pairs
		(iii)	Tetrahedral OR tetrahedron \checkmark	1	
	(d)		Add $\mathrm{AgNO}_{3}(\mathrm{aq})$ OR $\mathrm{Ag}^{+}(\mathrm{aq})$ OR silver nitrate OR $\mathrm{AgNO}_{3} \checkmark$ White precipitate \checkmark $\mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl} \checkmark$ Add dilute NH_{3} and precipitate (completely) dissolves OR disappears \checkmark	1 1 1 1	ALLOW $\mathrm{Ag}^{+}(\mathrm{aq})$ seen in the ionic equation IGNORE references to nitric acid IGNORE references to adding water or dissolving the brine DO NOT ALLOW references to any other additional reagent as well as the silver nitrate for the first mark White AND precipitate required DO NOT ALLOW hint of any other colour IGNORE 'turns grey' ALLOW solid as alternative for precipitate IGNORE states DO NOT ALLOW conc. NH_{3} DO NOT ALLOW any mention of incomplete dissolving ALLOW (for 4th mark) 'add $\mathrm{Cl}_{2}(\mathrm{aq})$ ' AND 'no colouration would be seen' OR 'no change' OR 'no reaction'
			Total	13	

Question		Expected Answers	Marks	Additional Guidance
	(iii)	Na shown with either 8 or 0 electrons AND O shown with 8 electrons with 6 crosses and 2 dots (or vice versa) Correct charges on both ions \checkmark	2	For 1st mark, if 8 electrons shown around cation then 'extra' electron(s) around anion must match symbol chosen for electrons in cation Shell circles not required IGNORE inner shell electrons ALLOW: $2\left[\mathrm{Na}^{+}\right] 2[\mathrm{Na}]^{+}\left[\mathrm{Na}^{+}\right]_{2}$ (brackets not required) DO NOT ALLOW $\left[\mathrm{Na}_{2}\right]^{2+} /\left[\mathrm{Na}_{2}\right]^{+} /[2 \mathrm{Na}]^{2+}$ DO NOT ALLOW: $\left[\mathrm{Na}_{2}\right]^{2+}\left[\mathrm{Na}_{2}\right]^{+}[2 \mathrm{Na}]^{2+}\left[\mathrm{Na}_{2}{ }^{+}\right.$
(c)		sodium is a (good) conductor because it has mobile electrons OR delocalised electrons OR electrons can move sodium oxide does not conduct as a solid sodium oxide conducts when it is a liquid ions cannot move in a solid \checkmark ions can move OR are mobile when liquid	5	Throughout this question, 'conducts' and 'carries charge' are treated as equivalent terms. DO NOT ALLOW 'free electrons' for mobile electrons ALLOW poor conductor OR bad conductor 'Sodium oxide only conducts when liquid' is insufficient to award 'solid conductivity' mark ALLOW ions are fixed in place IGNORE electrons IGNORE charge carriers IGNORE 'delocalised ions' or 'free ions' for mobile ions Any mention of electrons moving is a CON
		Total	12	

Questi	er	Marks	Guidance
(c)	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer $=72(.0)\left(\mathrm{cm}^{3}\right)$ award 3 marks amount of $\mathrm{K}=0.2346 / 39.1 \mathbf{O R}=6$.(00) $\times 10^{-3} \mathbf{O R}$ $0.006(00) \mathrm{mol}$ amount of $\mathrm{H}_{2}=(\mathrm{mol}$ of K$) / 2 \mathrm{OR}=3 .(00) \times 10^{-3} \mathbf{O R}$ $0.003(00) \mathrm{mol}$ Volume of gas $=\left(\mathrm{mol}\right.$ of $\left.\mathrm{H}_{2}\right) \times 24000 \mathrm{OR}=72(.0)\left(\mathrm{cm}^{3}\right)^{\checkmark}$	3	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW mol of $\mathrm{K} \times 0.5$ correctly calculated for 2 nd mark ALLOW mol of $\mathrm{H}_{2} \times 24000$ correctly calculated for 3rd mark ALLOW $144\left(\mathrm{~cm}^{3}\right)$ from 0.006×24000 for two marks ALLOW 0.072 from 0.003×24 for two marks ALLOW calculator value or rounding to 2 significant figures or more BUT IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2
	Total	11	

Question			Answer	Mark	Guidance
4	(a)		The ability of an atom to attract electrons \checkmark in a covalent bond	2	ALLOW 'attraction of an atom for electrons' ALLOW 'pull' for 'attract' DO NOT ALLOW 'element' for 'atom' ALLOW 'shared pair' or 'bond(ing) pair' for 'covalent bond'
	(b)		$\delta^{+} \mathrm{N}-\mathrm{F} \delta^{-}$AND $\delta^{-} \mathrm{N}-\mathrm{Br} \delta^{+} \checkmark$	1	ALLOW d+ / d- DO NOT ALLOW + / -
	(c)	(i)	octahedral OR octahedron \checkmark	1	
		(ii)	Diagram of BF_{3} showing three 'dot-and-cross' bonds between B and F and all F atoms with complete octet of electrons \checkmark Diagram of NH_{3} showing three 'dot-and-cross' bonds between N and H and N atom has a lone pair \checkmark Marking points 3, 4 and 5 may be awarded independently electron pairs repel \checkmark NH_{3} has one lone pair and three bonding pairs of electrons AND lone pair of electrons repels more than bonding pairs \checkmark BF_{3} has three (bonding) pairs of electrons (which repel equally)	5	Use annotations with ticks, crosses ECF etc. for this part ALLOW diagrams without circles Must be 'dot-and-cross' IGNORE ‘electrons repel' DO NOT ALLOW 'atoms repel' ALLOW 'bonds repel' ALLOW 'bonds' for 'bonding pairs' ALLOW 'four pairs' in place of 'one lone pair and three bonding pairs' The third marking point can be gained from statements seen in fourth or fifth marking points

Question		er	Mark		
4	(c)	(iii)	$\begin{array}{l}\mathrm{BF}_{3} \text { is symmetrical } \checkmark \\ \text { The dipoles cancel out } \checkmark \\ \hline\end{array}$		2

IGNORE 'charges cancel'\end{array}\right]\)

Question			Expected Answers	Marks	Additional Guidance
5	(a)	(i)	(Electrostatic) attraction between oppositely charged ions.	1	IGNORE force IGNORE references to transfer of electrons MUST be ions, not particles
		(ii)	Mg shown with either 8 of 0 electrons AND S shown with 8 electrons with 2 crosses and 6 dots (or vice versa) Correct charges on both ions	2	Mark charges on ions and electrons independently For first mark, if 8 electrons are shown around the Mg then 'extra electrons' around S must match the symbol chosen for electrons around Mg Shell circles not required IGNORE inner shell electrons Brackets are not required
	(b)	(i)	Electron pairs in covalent bonds shown correctly using dots and crosses in a molecule of the $\mathrm{F}_{2} \mathrm{O} \checkmark$ Lone pairs correct on O and both F atoms \checkmark	2	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of O do not need to be shown as pairs Non-bonding electrons of F do not need to be shown as pairs
		(ii)	Predicted bond angle 104-105 ${ }^{\circ}$. There are 2 bonded pairs and 2 lone pairs Lone pairs repel more than bonded pairs \checkmark	3	ALLOW $103-105^{\circ}\left(103^{\circ}\right.$ is the actual bond angle $)$ ALLOW responses equivalent to second marking point. e.g. There are 4 pairs of electrons and 2 of these are lone pairs ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair ALLOW LP repel more if bonded pairs have already been mentioned

Question		Expected Answers	Marks	Additional Guidance
(c)	(i)	(At least) two NH_{3} molecules with correct dipole shown with at least one H with δ^{+}and one N with δ^{-} (Only) one hydrogen bond from N atom on one molecule to a H atom on another molecule Lone pair shown on the N atom and hydrogen bond must hit the lone pair \checkmark	3	DO NOT ALLOW first mark for ammonia molecules with incorrect lone pairs DO NOT ALLOW first mark if $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2}$ or NH is shown ALLOW hydrogen bond need not be labelled as long as it clear the bond type is different from the covalent $\mathrm{N}-\mathrm{H}$ bond ALLOW a line (i.e. looks like a covalent bond) as long as it is labelled 'hydrogen bond) ALLOW 2-D diagrams ALLOW two marks if water molecules are used. One awarded for a correct hydrogen bond and one for the involvement of lone pair
	(ii)	Liquid $\mathrm{H}_{2} \mathrm{O}$ is denser than solid \checkmark In solid state $\mathrm{H}_{2} \mathrm{O}$ molecules are held apart by hydrogen bonds OR ice has an open lattice \checkmark OR $\mathrm{H}_{2} \mathrm{O}$ has a relatively high boiling point OR melting point \checkmark (relatively strong) hydrogen bonds need to be broken OR a lot of energy is needed to overcome hydrogen bonds OR hydrogen bonds are strong \checkmark	2	ORA ALLOW ice floats for first mark ALLOW higher melting OR boiling point than expected DO NOT ALLOW $\mathrm{H}_{2} \mathrm{O}$ has a high melting / boiling point ALLOW other properties caused by hydrogen bonding not mentioned within the specification E.g. high surface tension - strong hydrogen bonds on the surface
		Total	13	

