Question			Expected Answers	Marks	Additional Guidance
1	a	i	a shared pair of electrons \checkmark	1	ALLOW any response that communicates electron pair ALLOW shared pairs
		ii		1	Must be 'dot-and-cross' circles for outer shells NOT needed IGNORE inner shells Non-bonding electrons of N do not need to be shown as a pair.
		iii	Shape: pyramidal OR (trigonal) pyramid Explanation: There are 3 bonded pairs and 1 lone pair \checkmark Lone pairs repel more than bonded pairs \checkmark	3	ALLOW 'bonds' for 'bonded pairs' DO NOT ALLOW 'atoms repel' DO NOT ALLOW electrons repel ALLOW LP for 'lone pair' ALLOW BP for bonded pair
	b	i	$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} \checkmark$	1	ALLOW subscripts
		ii	'Dot-and-cross' diagram to show four shared pairs of electrons one of which is a dative covalent bond (which must consist of the same symbols)	1	IGNORE inner shells IGNORE '+' sign BUT a DO NOT ALLOW '-' sign. Brackets and circles not required

Question		Expected Answers	Marks	Additional Guidance
	iii	$\begin{aligned} & \text { tetrahedral } \\ & 109.5^{\circ} \checkmark \end{aligned}$	2	ALLOW 109-110º
	iv	ions OR electrons cannot move in a solid ions can move OR are mobile in solution	2	ALLOW ions can move in liquid DO NOT ALLOW ions can move when molten ALLOW 1 mark for: 'Ions can only move in solution'
	c i	$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \checkmark$	1	$\begin{aligned} & \text { ALLOW } 2 \mathrm{NH}_{4} \mathrm{OH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\ & \text { ALLOW } \mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}^{+} \end{aligned}$ ALLOW any correct multiple IGNORE state symbols
	ii	when the H^{+}in an acid is replaced by a metal ion OR an ammonium ion OR a +ion \checkmark	1	ALLOW H for H^{+}; ALLOW 'metal' for 'metal ion i.e.: H in an acid can be replaced by a metal
	iii	accepts a proton OR accepts $\mathrm{H}^{+} \checkmark$	1	ALLOW donates a lone pair ALLOW removes H^{+} ALLOW forms OH^{-}ions
	iv	$132.1{ }^{\checkmark}$	1	IGNORE units NO OTHER ACCEPTABLE ANSWER
		Total	15	

Question			Answer	Mark	Guidance
2	(a)		$\begin{aligned} & \mathrm{Cl} \text { (has been oxidised) from } \mathrm{Cl}=-1 \text { to } \mathrm{Cl}=0 \quad \\ & \mathrm{Mn} \text { (has been reduced) from } \mathrm{Mn}=+4 \text { to } \mathrm{Mn}=+2 \end{aligned}$	2	ALLOW 4+ OR 4 OR 2+ OR 2 ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text ALLOW one mark for Cl is oxidised because the oxidation number increased by 1 AND Mn is reduced because the oxidation number decreased by 2 ALLOW one mark if all oxidation numbers are correct but redox is incorrect. IGNORE HCl is oxidised AND MnO_{2} is reduced IGNORE correct references to electron loss/gain DO NOT ALLOW incorrect references to electron loss/gain
(b)			$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2} \checkmark$	1	ALLOW $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{5}$ IGNORE $1 \mathrm{~s}^{2}$ seen twice
	(c)		$\mathrm{Cl}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaClO}+\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols ALLOW OH^{-}and ClO^{-}, i.e. $\mathrm{Cl}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ClO}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$ ALLOW NaOCI
3	(d)	(i)	(The solution would turn) yellow OR orange OR brown \checkmark	1	ALLOW shades and colours (eg dark yellow, yellow-orange) DO NOT ALLOW 'purple'
	(d)	(ii)	$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \checkmark$	1	ALLOW multiples State symbols required ALLOW $\mathrm{Cl}_{2}(\mathrm{aq})$
	(e)	(i)	The ability of an atom to attract electrons \checkmark (Electron pair) in a (covalent) bond \checkmark	2	ALLOW 'Measure' for ability ALLOW 'attraction' for 'ability to attract' ALLOW 'The ability of an atom to attract a shared pair of electrons' for two marks

Question		Answer	Mark	Guidance	
(e)	(ii)	 Correct orientation of 3-D tetrahedral arrangement of bonds around C atom $\delta+$ on C atom AND δ - on both Cl atoms	2	For a 3D structure,	
				For bond in the plane of paper, a solid line is expected:	$>$
				For bond out of plane of paper, a solid wedge is expected:	V
				For bond into plane of paper, ALLOW:	
				ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	
				ALLOW any 3D representa into the plane of paper AND paper ALLOW 2 lines in the plane IGNORE dipole charges on	tion with a minimum of one bond minimum of one out of plane of +2 different bonds for M1
	(iii)	The dipoles do not cancel out OR Because the molecule is non-symmetrical	1	ALLOW partial charges do IGNORE charges do not ca ALLOW (the more) electro the molecule	not cancel ncel egative atoms are on one side of
(f)		55\% \checkmark	1		
		Total	12		

Question		Answer	Mark	Guidance	
$\mathbf{3}$	(a)		period = 5 AND block = $\mathrm{p} \checkmark$	$\mathbf{1}$	
	(b)	(i)	Atom(s) of an element	$\mathbf{1}$	$\begin{array}{l}\text { ALLOW for 'atoms of an element': } \\ \text { Atoms of the same element } \\ \text { OR } \\ \text { Atoms with the same number of protons } \\ \text { OR } \\ \text { Atoms with the same atomic number }\end{array}$
AND	$\begin{array}{l}\text { with different numbers of neutrons (and with different } \\ \text { masses) } \checkmark\end{array}$		$\begin{array}{l}\text { IGNORE different relative atomic masses } \\ \text { IGNORE different mass number } \\ \text { IGNORE same number of electrons } \\ \text { DO NOT ALLOW different number of electrons }\end{array}$		
DO NOT ALLOW 'atoms of elements' for 'atoms of an					
element'					
DO NOT ALLOW 'an element with different numbers of					
neutrons) (ie atom(s) is essential)					

Question		Answer	Mark	Guidance
(c)	(i)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) compared with $1 / 12$ th (the mass) of (one atom of) carbon-12 \checkmark	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 For three marks; ALLOW mass of one mole of atoms compared to $1 / 12$ th (mass of) one mole OR 12 g of carbon OR ALLOW \qquad 1/12th mass of one mole OR 12g of carbon-12
(c)	(ii)	$123 \checkmark$	1	ALLOW ${ }^{123}$ Sb OR Sb-123 OR antimony-123 ALLOW 123.0 IGNORE working
(d)	(i)	(Trigonal) Pyramidal \checkmark (Sb has) three bonding pairs AND one lone pair of electrons Pairs of electrons repel	3	ALLOW alternative phrases/words to repel eg 'push apart' ALLOW lone pairs repel more than bonding pairs ALLOW bonds for bonded pairs ALLOW Ip and bp IGNORE electrons repel DO NOT ALLOW atoms repel

Question		Answer	Mark	Guidance
(d)	(ii)	There is a difference in electronegativities (between Sb and Cl) OR (Sb-Cl) bonds are polar OR have a dipole OR Dipoles seen on the diagram The molecule is not symmetrical AND dipoles do not cancel	2	ALLOW Because Cl is more electronegative (than Sb) OR Because Sb is more electronegative (than Cl) ALLOW description that electrons are drawn along a covalent bond IGNORE single $\delta+$ or single δ - for dipole IGNORE diagram if M1 awarded in text ALLOW partial charges do not cancel IGNORE references to lone pair causing dipoles
		Total	13	

Question		Answer	Mark	Guidance
(b)	(i)	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \checkmark$	1	ALLOW ... $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10} 4 \mathrm{p}^{6}$ ALLOW subscripts AND 3D IGNORE $1 \mathrm{~s}^{2}$ seen twice
(b)	(ii)	Cream AND precipitate \checkmark	1	ALLOW solid OR ppt for precipitate IGNORE 'does not dissolve' OR 'partially dissolves'
(b)	(iii)	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \rightarrow \mathrm{AgBr}(\mathrm{s}) \checkmark$	1	Equation AND state symbols required
(c)	(i)	Equation $2 \mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}+\mathrm{H}_{2} \mathrm{O} \checkmark$ Conditions cold AND dilute (sodium hydroxide)	2	ALLOW correct multiples IGNORE state symbols ALLOW room temperature $\mathrm{OR} \leq 20^{\circ} \mathrm{C}$ for cold

Question		Answer	Mark	Guidance
(c)	(ii)	Definition of disproportionation mark M1 (Disproportionation) is the (simultaneous) oxidation and reduction of the same element (in the same redox reaction) M2 Assigning of oxidation numbers Cl in Cl_{2} is 0 AND Cl in NaCl is -1 AND Cl in NaClO_{3} is +5 M3 Chlorine has been oxidised from 0 to +5 AND Chlorine has been reduced from 0 to $-1 \checkmark$ 'Chlorine has been oxidised from 0 in Cl_{2} to +5 in NaClO_{3} and chlorine has been reduced from 0 in Cl_{2} to -1 in NaCl^{\prime} would secure M2 and M3 This diagram, along with a correct definition, would secure all three marks.	3	ALLOW 'an element' OR 'a species' for 'the same element' Assume 'it' means disproportionation M1 can be awarded for 'chlorine is oxidised and reduced and this is disproportionation' ALLOW oxidation numbers written above the equation if not seen in the text but IGNORE oxidation numbers written above the equation if seen in the text ALLOW 1- AND 5 AND 5+ DO NOT ALLOW chloride in place of chlorine except for NaCl DO NOT ALLOW Cl ${ }^{-}$in NaCl AND Cl ${ }^{5+}$ in NaClO_{3} (ie do not allow ionic charges for oxidation numbers) ALLOW CI OR Cl ${ }_{2}$ for chlorine DO NOT ALLOW M2 if incorrect oxidation numbers of other elements are seen in the text eg $\mathrm{H}=+2$ ALLOW ECF for third marks if ONE incorrect oxidation number is assigned but directional changes are correct eg Cl $=0$ and -1 and +3 instead 0 and -1 and +5 DO NOT ALLOW ECF if two oxidation numbers are incorrectly assigned IGNORE references to electron loss/gain If oxidation numbers are correct ALLOW third mark for: chlorine is oxidised to form NaClO_{3} AND chlorine is reduced to form NaCl
		Total	11	

