Question		Answer	Marks	Guidance
1	(a)	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) compared with $1 / 12$ th (the mass) of (one atom of) carbon-12 \checkmark	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular; 'isotope' For second and third marking points ALLOW compared with (the mass of) carbon-12 which is 12 ALLOW mass of one mole of atoms compared to $1 / 12$ th \checkmark (mass of) one mole OR 12 g of carbon-12 \checkmark ALLOW \qquad 1/12th mass of one mole OR 12 g of carbon-12
	(b)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 32.09 award 2 marks $\frac{32 \times 95.02+33 \times 0.76+34 \times 4.22}{100}$ OR $30.4064+0.2508+1.4348$ OR $=32.092$ (calculator value) $\left(A_{r}=\right) 32.09 \checkmark$	2	ALLOW one mark for ECF from transcription error in first sum provided final answer is to 2 decimal places and is between 32 and 34 and is a correct calculation of the transcription Answer must be 2 decimal places

Question			Answer				Marks	Guidance
1	(c)						2	Mark by row
				protons	neutrons			
			${ }^{33} \mathrm{~S}$	16	17			
			${ }^{34} \mathrm{~S}^{2-}$	16	18			
	(d)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=5.78 \times 10^{22}$ award 2 marks $(\mathrm{mol}$ of atoms $)=0.0120 \times 8=0.0960(\mathrm{~mol})$ OR $($ no. of molecules $)=0.0120 \times 6.02 \times 10^{23}=7.224 \times 10^{21}$ OR (no. of S atoms in 1 mole of S_{8}) $=8 \times 6.02 \times 10^{23}=4.816 \times$ $10^{24} \checkmark$ Correctly calculates (number of atoms) $=0.0120 \times 8 \times$ 6.02×10^{23} $=5.78 \times 10^{22} \text { (atoms) } \checkmark$				2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 5.8×10^{22} up to calculator value of 5.7792×10^{22} ALLOW correct rounding of ECF to 2 significant figures or more up to calculator value ALLOW answers in non standard form such as 0.578×10^{23} correctly rounded to 2 or more significant figures
	(e)	(i)	Creating the dipole mark Uneven distribution of electrons Type of dipole mark Creates or causes an instantaneous dipole OR temporary dipole (in a molecule) Induction of a second dipole mark Causes induced dipoles in neighbouring molecules \checkmark				3	Use annotations with ticks, crosses, ECF etc for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', 'oscillating' 'momentary' 'changing' DO NOT ALLOW induces a temporary dipole for the second marking point ALLOW induces a dipole in neighbouring molecules ALLOW causes a resultant dipole in other molecules ALLOW atoms for molecules

Question			er	Marks	Guidance
1	(e)	(ii)	Only one type of atom OR No (permanent) dipoles OR non-polar OR no polar bonds	1	ALLOW no difference in electronegativity IGNORE 'No hydrogen bonding' IGNORE 'No lone pairs'
	(f)		+ $2 \checkmark$	1	ALLOW 2(+)
	(g)	(i)	There are no waters of crystallisation \checkmark	1	ALLOW 'without water' 'no water' etc IGNORE dehydrated
		(ii)	$248.2 \checkmark$	1	IGNORE units DO NOT ALLOW 248
		(iii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 7.91 (g) award 2 marks $\begin{aligned} & \left(\text { amount of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right) \\ & =12.41 / 248.2 \mathrm{OR}=0.05(00)(\mathrm{mol}) \\ & \left(\text { mass of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right) \\ & =0.05 \times 158.2=7.91(\mathrm{~g}) \checkmark \end{aligned}$	2	If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECFs from answer to (g)(ii) for both marking points ALLOW ECF for calculated mol of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O} \times 158.2$ correctly calculated for the 2nd mark ALLOW calculator value or rounding to 3 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2

Question			er	Marks	Guidance
$\mathbf{1}$	(h)	(i)	Sulfur has six bonded pairs (and no lone pairs) \checkmark Electron pairs repel (one another equally) \checkmark	2	ALLOW 'It has six bonded pairs' ALLOW bonds for bonded pairs IGNORE regions OR areas of negative charge
	(ii) The ability of an atom to attract electrons \checkmark in a (covalent) bond \checkmark (The octahedral shape) is symmetrical \checkmark DO NOT ALLOW 'Atoms repel' or 'electrons repel' Lone pairs repel more than bonded pairs' would score the second mark but would contradict the first mark if there is no reference to no lone pairs				

Question			Answer	Marks	Guidance
2	(c)	(ii)	If a Group 2 chloride is used amount of Group 2 chloride $=1 / 2 \times 0.0600$ OR $=0.0300$ mol Mass of 1 mol of Group 2 chloride $=\frac{2.86}{0.0300}=95.3(3) \checkmark$ [Relative atomic mass of $\mathrm{M}=95.3(3)-71.0)=24.3$ (g $\left.\mathrm{mol}^{-1}\right)$] AND metal $=\mathrm{Mg} \checkmark$	3	DO NOT ALLOW 24.3 and Mg without appropriate working Check to see if there is any ECF credit possible using working below ALLOW calculator value or rounding to 2 significant figures or more but IGNORE 'trailing' zeroes, eg 0.200 allowed as 0.2 ALLOW ECF for correctly calculated $1 / 2 \times$ answer to (c)(i) Must be at least 1 decimal place for second marking point ALLOW ECF for $2.86 / \mathrm{mol}$ of metal chloride seen above eg MCl will give 0.0600 mol of metal chloride and this will likely give 2.86/0.0600 $=47.7$ eg MCl_{3} will give 0.0200 mol of metal chloride and this will likely give 2.86/0.0200 = 143.0 ALLOW ECF for mass of Group 2 chloride -71.0 provided it is not a negative value ALLOW ECF even if molar mass of chloride was given as a whole number above ALLOW ECF for mass of metal chloride - 35.5 if amount of metal chloride $=0.0600 \mathrm{~mol}$ eg $47.7-35.5=12.2$ AND Be ALLOW ECF for mass of metal chloride - 106.5 if amount of metal chloride $=0.0200 \mathrm{~mol}$ eg 143.0-106.5 = 36.5 AND Ca

Question			Answer	Marks	Guidance
2	(e)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer $=\mathbf{2 4 2}\left(\mathrm{cm}^{3}\right)$ award 3 marks $\begin{aligned} & \left(\text { amount of } \mathrm{KClO}_{3}\right)=0.824 / 122.6 \mathrm{OR}=0.00672(\mathrm{~mol}) \checkmark \\ & \left(\text { amount } \mathrm{O}_{2}\right)=\left(\mathrm{mol}^{\text {of } \left.\mathrm{KClO}_{3}\right)} 0.00672 \times 3 / 2 \mathrm{OR}=0.0101\right. \\ & (\mathrm{mol}) \\ & \left(\text { volume of } \mathrm{O}_{2}\right)=0.0101 \times 24000=242\left(\mathrm{~cm}^{3}\right) \checkmark \end{aligned}$	3	IGNORE over rounding to two significant figures once DO NOT ALLOW over rounding to two significant figures twice eg ALLOW the following answer for 3 marks $241\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.0067 OR 0.0101 was rounded to 0.010) ALLOW the following answers for 2 marks $240\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.0067 AND 0.0101 was rounded to 0.010) $252\left(\mathrm{~cm}^{3}\right)(0.00672$ was rounded to 0.007) $161 \mathrm{~cm}^{3}$ (no multiplying by $3 / 2$) If there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW up to correctly rounded calculator value of 0.006721044046 ALLOW up to correctly rounded calculator value ALLOW ECF for mol of $\mathrm{KClO}_{3} \times 3 / 2$ for 2 nd mark ALLOW ECF for $\left(\mathrm{mol}\right.$ of $\left.\mathrm{KClO}_{3}\right) \times 3 / 2 \times 24000$
			Total	16	

Question			Answer	Mark	Guidance
4	(a)	(i)	Creating the dipole mark uneven distribution of electrons \checkmark Type of dipole mark creates an instantaneous dipole OR temporary dipole \checkmark Induction of a second dipole mark causes induced dipole(s) in neighbouring molecules \checkmark	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW movement of electrons ALLOW changing electron density ALLOW 'transient', 'oscillating', 'momentary', 'changing' ALLOW 'induces a dipole in neighbouring molecules' ALLOW 'causes a resultant dipole in neighbouring molecules' ALLOW 'atoms' for 'molecules'
		(ii)	boiling points increase down the group \checkmark greater number of electrons OR stronger intermolecular forces OR stronger van der Waals' forces \checkmark more energy needed to break intermolecular OR van der Waals' forces \checkmark	3	Use annotations with ticks, crosses ECF etc. for this part ALLOW Bpt of iodine is highest OR Bpt of chlorine is lowest ALLOW Cl for chlorine etc. For 'down the group' ALLOW 'as molecules get bigger' ALLOW number of electron shells increases IGNORE 'more shells' (if no reference to electrons) ALLOW 'more' for 'stronger' ALLOW iodine has most electrons ALLOW chlorine has fewest electrons DO NOT ALLOW any implication that the attraction is between atoms not molecules for third mark
	(b)		Same number of outer(most) electrons OR same outer(most) electron structure \checkmark	1	ALLOW same number of electrons in outer shell ALLOW It has seven outer electrons IGNORE same group DO NOT ALLOW 'same number of electrons'

Question			Answer	Mark	Guidance
4	(c)	(i)	Colours: (Add Br_{2} to NaCl ,) (Cyclohexane layer) turns orange OR yellow \checkmark (Add Br_{2} to NaI ,) (Cyclohexane layer) turns purple OR lilac OR violet OR pink OR mauve Equation: $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{Br}^{-} \checkmark$ Reactivity: Reactivity decreases down the group OR Oxidising power decreases down the group \checkmark Explanations: Chlorine will gain electron easiest OR form negative ion easiest \checkmark Because chlorine (atom) is smallest OR Outer(most) shell of chlorine least shielded OR Nuclear attraction on electrons of chlorine is greatest \checkmark	6	Use annotations with ticks, crosses ECF etc. for this part ALLOW any combination of these but no others ALLOW any combination of these but no others DO NOT ALLOW 'precipitate' with either colour DO NOT ALLOW equation mark if incorrect equation(s) also seen IGNORE $\mathrm{Br}_{2}+2 \mathrm{Cl}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{Cl}^{-}$ IGNORE correct non-ionic version of equation IGNORE state symbols ALLOW Chlorine is the most reactive ALLOW Cl for chlorine etc. ALLOW lodine is the least reactive ALLOW chlorine is best at electron capture ALLOW chlorine has 'greatest' electron affinity IGNORE chlorine is most electronegative DO NOT ALLOW explanations in terms of displacement Quality of Written Communication - Electron(s) OR negative spelled correctly at least ONCE for marking point 5 ALLOW Chlorine atom has fewest shells ALLOW outer(most) shell closest to the nucleus ALLOW Chlorine atom has lowest shielding ORA for marking points 4,5 and 6

Question		er	Mark	Guidance	
4	(c)	(ii)	Bromine is toxic \checkmark		$\begin{array}{l}\text { ALLOW cyclohexane is toxic } \\ \text { ALLOW bromine irritates the lungs } \\ \text { DO NOT ALLOW } \mathrm{Cl}_{2} \text { is toxic }\end{array}$
IGNORE 'strong smelling'					
IGNORE 'halogens' are toxic					

