1 Butan-2-ol can be prepared using two different methods.

(a)	Comment on the atom economy of each method, giving your reasons.	
		•••
	[21
/L. \		-,
(b)	State the catalyst required for Method 1 .	
	[1]
(c)	Average bond enthalpies can be used to calculate enthalpy changes.	
	(i) What is meant by the term average bond enthalpy?	
		•••
		_

(ii)	Calculate the enthalpy change of reaction, $\Delta H_{\rm r}$, for preparing 1 mol of butan-2-ol by Method 1 .
	Average bond enthalpies are given below.

Bond	Average bond enthalpy/kJ mol ⁻¹
O–H	464
C–H	413
C–C	347
C–O	358
C=C	612

Λ <i>H</i> =	kJ mol ⁻¹	[3]
$\Delta n_{\rm r}$ –	KO IIIOI	[~]

(d) A student uses **Method 2** to prepare 3.552 g of butan-2-ol from 2-bromobutane. The percentage yield of butan-2-ol is 80.0%.

Calculate the mass of 2-bromobutane that the student uses. Give your answer to **three** significant figures.

mass of 2-bromobutane =	 a	[3
made of E bromesatane	 9	L

[Total: 11]

- **2** A branched-chain alcohol **J** is a liquid and has the molecular formula $C_5H_{12}O$.
 - (a) A student does an experiment to measure the enthalpy change of combustion, $\Delta H_{\rm c}$, of alcohol **J**.
 - (i) The student burns alcohol J using the apparatus below.

The student found that combustion of 1.54g of alcohol $\bf J$ changes the temperature of 180g of water from 22.8 °C to 75.3 °C.

The specific heat capacity of water is $4.18 \, \mathrm{Jg^{-1} \, K^{-1}}$.

- Calculate the amount, in mol, of alcohol J that burns.
- Calculate the enthalpy change of combustion, ΔH_c , of alcohol **J**, in kJ mol⁻¹.

Give your final answer to **three** significant figures.

$$\Delta H_{c} = \text{kJ mol}^{-1}$$
 [4]

	(ii)			$\Delta H_{ m c}$ from this	experiment i	s different fro	om the value obtaine	d
		from dat	a books.					
		Apart fro	om heat loss, sug	gest two reas	ons for the dif	ference.		
		Assume	that the calculation	on has been o	arried out cor	rectly.		
				•••••				
							[2	<u>']</u>
(b)			change of comb halpy changes of		cohol J can	also be dete	rmined indirectly fror	n
	(i)		equation, includi d enthalpy change				ge that represents th	е
						· ·		
							[1]]
	(ii)	The equ	ation for the comp	olete combust	ion of alcohol	J is shown be	elow.	
			C ₅ H ₁₂ O(I) +	+ 7½O ₂ (g) ->	> 5CO ₂ (g) + 6	6H ₂ O(I)		
		Enthalpy	/ changes of form	ation, ∆ <i>H</i> _f , are	shown in the	e table.		
			Substance	C H O(I)	CO (a)	н ол		
			Substance	C ₅ H ₁₂ O(I)	CO ₂ (g)	H ₂ O(I)		
			$\Delta H_{\rm f}/{\rm kJmol^{-1}}$	-366	-394	-286		
		Calculat given ab		nange of com	nbustion, $\Delta H_{\rm c}$, of alcohol J	I from the informatio	n
					$\Delta H_{\rm c} =$		kJ mol [–]	¹ [3]

(c) The branched-chain alcohol J, $C_5H_{12}O$, was heated under reflux with excess $H_2SO_4/K_2Cr_2O_7$ to form an organic compound **K** with the infrared spectrum below.

- Determine the structures for the branched-chain alcohol J and compound K.
 Your answer should explain all your reasoning using the evidence given.
- Write an equation for the reaction of J when heated under reflux with excess H₂SO₄/K₂Cr₂O₇ to form K.
 Use [O] to represent the oxidising agent.

Your answer needs to be clear and well organised using the correct terminology.					
[6]					

	- 1						
[1]						
	•						
The same of the same same same same same same same sam							
Include relevant dipoles and lone pairs.							
Use a labelled diagram to support your answer.							
Explain why alcohol J is soluble in water.							
The alcohol J is soluble in water.							
-	Explain why alcohol J is soluble in water. Use a labelled diagram to support your answer. Include relevant dipoles and lone pairs.						

Hydrogen iodide, HI, is a colourless gas that can be made from the reaction of hydrogen, H₂, and 3 iodine, I2. This reversible reaction is shown in **equilibrium 3.1** below.

$$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$
 $\Delta H = -9 \text{ kJ mol}^{-1}$

$$\Delta H = -9 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

equilibrium 3.1

The activation energy for the forward reaction is 173 kJ mol⁻¹.

(a) Complete the enthalpy profile diagram below for the forward reaction in equilibrium 3.1.

On your diagram:

- Label the activation energy, $E_{\rm a}$ Label the enthalpy change of reaction, ΔH
- Include the formulae of the reactants and products.

[2]

(b) Calculate the activation energy, E_a , for the reverse reaction.

$$E_a$$
 (reverse reaction) =kJ mol⁻¹ [1]

(c) When the reverse reaction takes place hydrogen iodide, HI, decomposes to form iodine and hydrogen.

Calculate the enthalpy change when 336 dm³ of hydrogen iodide, measured at room temperature and pressure, decomposes.

Include the sign for enthalpy change in your answer.

(d)			mixes hyd reach dyna			at room tem	perature	and pres	sure ar	nd all	ows 1	the
		H ₂ (g)	$+ I_2(g) \rightleftharpoons$	≥ 2HI(g)		$\Delta H = -9 \mathrm{kJm}$	ol ⁻¹	equilibriu	m 3.1			
	(i)	A clos	ed system	is require	d for dyn	namic equilibri	um to be	establishe	ed.			
		State	one other	feature of	this dyna	amic equilibriu	ım.					
												[1]
	(ii)	The st	tudent hea	ts the equi	ilibrium r	nixture keepin	ng the vol	ume const	tant.			
		Predic	ct how the	compositio	on of the	equilibrium m	ixture ch	anges on I	heating			
		Explai	in your ans	swer.								
												[2]
	(iii)		ct and exp		effect, if	any, an incre	ase in th	e pressure	e would	l have	e on t	the
		effect										
		explar	nation									
												[1]
(e)	Cal info	culate rmatior	the bond	enthalpy	for the	H–I bond in	equilib	rium 3.1,	given	the f	ollow	ing
				Bond		Bond Ent	thalpy/k	J mol ^{−1}				
				H–H			436					
				I–I			151					
					bo	ond enthalpy				. kJ m	ıol ^{−1}	[2]

[Total: 11]

- 4 This question is about the determination of enthalpy changes.
 - (a) A student carries out an experiment to find the enthalpy change of reaction, ΔH_r , for the reaction below.

$$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$

In the experiment, 3.18g of $\mathrm{Na_2CO_3}$ are added to 50.0g of 2.00 mol dm⁻³ HCl, an excess. The temperature of the reaction mixture increases by 5.5 °C.

Calculate ΔH_r , in kJ mol⁻¹.

Give your answer to three significant figures.

The specific heat capacity, c, of the reaction mixture is $4.18 \,\mathrm{Jg^{-1}K^{-1}}$.

$$\Delta H_{\rm r} =$$
 kJ mol⁻¹ [4]

3A <i>l</i> (s				on and some enthalpy changes are s + $l_3(s) + 6H_2O(g) + 3NO(g)$	$\Delta H = -2677 \text{kJ} \text{mol}^{-1}$
`	,	4 4()	Substance	Standard enthalpy change of formation, $\Delta H_{\rm f}/{\rm kJmol^{-1}}$	
			NH ₄ ClO ₄ (s)	-295	
			Al ₂ O ₃ (s)	-1676	
			AlCl ₃ (s)	-704	
			H ₂ O(g)	-242	
					[3]
	(ii)			ng state symbols, for the reaction that ion of $NH_4ClO_4(s)$.	represents the standard
	(iii)	Calculate th	ne enthalpy cha	ange of formation of NO(g) using the o	
		er	nthalpy change	of formation of NO(g) =	kJ mol ⁻¹ [3] [Total: 12]

- **5** Nitrogen forms several oxides including N₂O₄, N₂O and NO.
 - (a) A rocket uses the reaction between N_2O_4 and methylhydrazine, CH_3NHNH_2 , equation 5.1, to release a large amount of energy.

$$4 \text{CH}_3 \text{NHNH}_2(\text{I}) \ + \ 5 \text{N}_2 \text{O}_4(\text{I}) \ \longrightarrow \ 4 \text{CO}_2(\text{g}) \ + \ 12 \text{H}_2 \text{O}(\text{g}) \ + \ 9 \text{N}_2(\text{g}) \quad \text{equation 5.1}$$

Some enthalpy changes of formation, $\Delta H_{\rm f}$, are shown in the table.

Substance	$\Delta H_{\rm f}/{\rm kJmol^{-1}}$
CH ₃ NHNH ₂ (I)	+54
N ₂ O ₄ (I)	-20
CO ₂ (g)	-394
H ₂ O(g)	-242

Using the enthalpy changes of formation, $\Delta H_{\rm f}$, calculate the enthalpy change of reaction in equation 5.1.

enthalpy change of reaction = kJ mol⁻¹ [3]

(b) Under certain conditions nitrogen reacts with oxygen to make N₂O.

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$
 equation 5.2

The enthalpy profile diagram for this reaction is shown in Fig. 5.3.

Fig. 5.3

(i) Calculate the enthalpy change when $240\,\mathrm{dm^3}$ of $\mathrm{N_2O}(\mathrm{g})$, measured at room temperature and pressure, is formed from $\mathrm{N_2}$ and $\mathrm{O_2}$.

(ii) What is the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g)?

$$\Delta H_{\rm f}$$
 = kJ mol⁻¹ [1]

Fig. 5.3 (repeated)

(iii) The reaction in equation 5.2 is reversible.

$$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$
 equation 5.2

Calculate the activation energy, $\boldsymbol{E}_{\mathrm{a}}$, for the reverse reaction.

$$E_{\rm a}$$
 (reverse reaction) = kJ mol⁻¹ [1]

(c)	Describe and explain, using equations, how the concentration of ozone in the stratosphere is maintained.
	[2]
(d)	In the stratosphere, NO catalyses the breakdown of ozone.
	Write two equations to show how NO catalyses this breakdown.
	[2]
	[Total: 11]