1 Butan-2-ol can be prepared using two different methods. | (a) | Comment on the atom economy of each method, giving your reasons. | | |-------|--|-----| | | | ••• | | | | | | | | | | | | | | | [| 21 | | /L. \ | | -, | | (b) | State the catalyst required for Method 1 . | | | | [| 1] | | (c) | Average bond enthalpies can be used to calculate enthalpy changes. | | | | (i) What is meant by the term average bond enthalpy? | | | | | | | | | | | | | ••• | | | | | | | | _ | | (ii) | Calculate the enthalpy change of reaction, $\Delta H_{\rm r}$, for preparing 1 mol of butan-2-ol by Method 1 . | |------|--| | | Average bond enthalpies are given below. | | Bond | Average bond enthalpy/kJ mol ⁻¹ | |------|--| | O–H | 464 | | C–H | 413 | | C–C | 347 | | C–O | 358 | | C=C | 612 | | Λ <i>H</i> = | kJ mol ⁻¹ | [3] | |----------------------|----------------------|-----| | $\Delta n_{\rm r}$ – | KO IIIOI | [~] | (d) A student uses **Method 2** to prepare 3.552 g of butan-2-ol from 2-bromobutane. The percentage yield of butan-2-ol is 80.0%. Calculate the mass of 2-bromobutane that the student uses. Give your answer to **three** significant figures. | mass of 2-bromobutane = |
a | [3 | |-------------------------|-------|----| | made of E bromesatane |
9 | L | [Total: 11] - **2** A branched-chain alcohol **J** is a liquid and has the molecular formula $C_5H_{12}O$. - (a) A student does an experiment to measure the enthalpy change of combustion, $\Delta H_{\rm c}$, of alcohol **J**. - (i) The student burns alcohol J using the apparatus below. The student found that combustion of 1.54g of alcohol $\bf J$ changes the temperature of 180g of water from 22.8 °C to 75.3 °C. The specific heat capacity of water is $4.18 \, \mathrm{Jg^{-1} \, K^{-1}}$. - Calculate the amount, in mol, of alcohol J that burns. - Calculate the enthalpy change of combustion, ΔH_c , of alcohol **J**, in kJ mol⁻¹. Give your final answer to **three** significant figures. $$\Delta H_{c} = \text{kJ mol}^{-1}$$ [4] | | (ii) | | | $\Delta H_{ m c}$ from this | experiment i | s different fro | om the value obtaine | d | |-----|------|----------------------|--|--------------------------------------|------------------------------|----------------------|------------------------|------------------| | | | from dat | a books. | | | | | | | | | Apart fro | om heat loss, sug | gest two reas | ons for the dif | ference. | | | | | | Assume | that the calculation | on has been o | arried out cor | rectly. | ••••• | | | | | | | | | | | | | [2 | <u>']</u> | | (b) | | | change of comb
halpy changes of | | cohol J can | also be dete | rmined indirectly fror | n | | | (i) | | equation, includi
d enthalpy change | | | | ge that represents th | е | | | | | | | | · · | | | | | | | | | | | [1 |]] | | | (ii) | The equ | ation for the comp | olete combust | ion of alcohol | J is shown be | elow. | | | | | | C ₅ H ₁₂ O(I) + | + 7½O ₂ (g) -> | > 5CO ₂ (g) + 6 | 6H ₂ O(I) | | | | | | Enthalpy | / changes of form | ation, ∆ <i>H</i> _f , are | shown in the | e table. | | | | | | | Substance | C H O(I) | CO (a) | н ол | | | | | | | Substance | C ₅ H ₁₂ O(I) | CO ₂ (g) | H ₂ O(I) | | | | | | | $\Delta H_{\rm f}/{\rm kJmol^{-1}}$ | -366 | -394 | -286 | | | | | | Calculat
given ab | | nange of com | nbustion, $\Delta H_{\rm c}$ | , of alcohol J | I from the informatio | n | | | | | | | $\Delta H_{\rm c} =$ | | kJ mol [–] | ¹ [3] | (c) The branched-chain alcohol J, $C_5H_{12}O$, was heated under reflux with excess $H_2SO_4/K_2Cr_2O_7$ to form an organic compound **K** with the infrared spectrum below. - Determine the structures for the branched-chain alcohol J and compound K. Your answer should explain all your reasoning using the evidence given. - Write an equation for the reaction of J when heated under reflux with excess H₂SO₄/K₂Cr₂O₇ to form K. Use [O] to represent the oxidising agent. | Your answer needs to be clear and well organised using the correct terminology. | | | | | | |---|--|--|--|--|--| [6] | | | | | | | | -
1 | | | | | | | |--|---|--|--|--|--|--|--| | [1 |] | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | | The same of the same same same same same same same sam | | | | | | | | | Include relevant dipoles and lone pairs. | | | | | | | | | Use a labelled diagram to support your answer. | | | | | | | | | Explain why alcohol J is soluble in water. | | | | | | | | | The alcohol J is soluble in water. | | | | | | | | | - | Explain why alcohol J is soluble in water. Use a labelled diagram to support your answer. Include relevant dipoles and lone pairs. | | | | | | | Hydrogen iodide, HI, is a colourless gas that can be made from the reaction of hydrogen, H₂, and 3 iodine, I2. This reversible reaction is shown in **equilibrium 3.1** below. $$H_2(g) + I_2(g) \Longrightarrow 2HI(g)$$ $\Delta H = -9 \text{ kJ mol}^{-1}$ $$\Delta H = -9 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$ equilibrium 3.1 The activation energy for the forward reaction is 173 kJ mol⁻¹. (a) Complete the enthalpy profile diagram below for the forward reaction in equilibrium 3.1. On your diagram: - Label the activation energy, $E_{\rm a}$ Label the enthalpy change of reaction, ΔH - Include the formulae of the reactants and products. [2] **(b)** Calculate the activation energy, E_a , for the reverse reaction. $$E_a$$ (reverse reaction) =kJ mol⁻¹ [1] (c) When the reverse reaction takes place hydrogen iodide, HI, decomposes to form iodine and hydrogen. Calculate the enthalpy change when 336 dm³ of hydrogen iodide, measured at room temperature and pressure, decomposes. Include the sign for enthalpy change in your answer. | (d) | | | mixes hyd
reach dyna | | | at room tem | perature | and pres | sure ar | nd all | ows 1 | the | |-----|-------------|--------------------|-------------------------------|-------------|------------|------------------------------|------------------|---------------------|---------|--------|-------------------|-----| | | | H ₂ (g) | $+ I_2(g) \rightleftharpoons$ | ≥ 2HI(g) | | $\Delta H = -9 \mathrm{kJm}$ | ol ⁻¹ | equilibriu | m 3.1 | | | | | | (i) | A clos | ed system | is require | d for dyn | namic equilibri | um to be | establishe | ed. | | | | | | | State | one other | feature of | this dyna | amic equilibriu | ım. | [1] | | | (ii) | The st | tudent hea | ts the equi | ilibrium r | nixture keepin | ng the vol | ume const | tant. | | | | | | | Predic | ct how the | compositio | on of the | equilibrium m | ixture ch | anges on I | heating | | | | | | | Explai | in your ans | swer. | [2] | | | (iii) | | ct and exp | | effect, if | any, an incre | ase in th | e pressure | e would | l have | e on t | the | | | | effect | | | | | | | | | | | | | | explar | nation | [1] | | (e) | Cal
info | culate
rmatior | the bond | enthalpy | for the | H–I bond in | equilib | rium 3.1, | given | the f | ollow | ing | | | | | | Bond | | Bond Ent | thalpy/k | J mol ^{−1} | | | | | | | | | | H–H | | | 436 | | | | | | | | | | | I–I | | | 151 | bo | ond enthalpy | | | | . kJ m | ıol ^{−1} | [2] | [Total: 11] - 4 This question is about the determination of enthalpy changes. - (a) A student carries out an experiment to find the enthalpy change of reaction, ΔH_r , for the reaction below. $$Na_2CO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + CO_2(g) + H_2O(l)$$ In the experiment, 3.18g of $\mathrm{Na_2CO_3}$ are added to 50.0g of 2.00 mol dm⁻³ HCl, an excess. The temperature of the reaction mixture increases by 5.5 °C. Calculate ΔH_r , in kJ mol⁻¹. Give your answer to three significant figures. The specific heat capacity, c, of the reaction mixture is $4.18 \,\mathrm{Jg^{-1}K^{-1}}$. $$\Delta H_{\rm r} =$$ kJ mol⁻¹ [4] | 3A <i>l</i> (s | | | | on and some enthalpy changes are s
+ $l_3(s) + 6H_2O(g) + 3NO(g)$ | $\Delta H = -2677 \text{kJ} \text{mol}^{-1}$ | |----------------|-------|--------------|--------------------------------------|--|--| | ` | , | 4 4() | Substance | Standard enthalpy change of formation, $\Delta H_{\rm f}/{\rm kJmol^{-1}}$ | | | | | | NH ₄ ClO ₄ (s) | -295 | | | | | | Al ₂ O ₃ (s) | -1676 | | | | | | AlCl ₃ (s) | -704 | | | | | | H ₂ O(g) | -242 | | | | | | | | [3] | | | (ii) | | | ng state symbols, for the reaction that ion of $NH_4ClO_4(s)$. | represents the standard | | | (iii) | Calculate th | ne enthalpy cha | ange of formation of NO(g) using the o | | | | | er | nthalpy change | of formation of NO(g) = | kJ mol ⁻¹ [3]
[Total: 12] | - **5** Nitrogen forms several oxides including N₂O₄, N₂O and NO. - (a) A rocket uses the reaction between N_2O_4 and methylhydrazine, CH_3NHNH_2 , equation 5.1, to release a large amount of energy. $$4 \text{CH}_3 \text{NHNH}_2(\text{I}) \ + \ 5 \text{N}_2 \text{O}_4(\text{I}) \ \longrightarrow \ 4 \text{CO}_2(\text{g}) \ + \ 12 \text{H}_2 \text{O}(\text{g}) \ + \ 9 \text{N}_2(\text{g}) \quad \text{equation 5.1}$$ Some enthalpy changes of formation, $\Delta H_{\rm f}$, are shown in the table. | Substance | $\Delta H_{\rm f}/{\rm kJmol^{-1}}$ | |---------------------------------------|-------------------------------------| | CH ₃ NHNH ₂ (I) | +54 | | N ₂ O ₄ (I) | -20 | | CO ₂ (g) | -394 | | H ₂ O(g) | -242 | Using the enthalpy changes of formation, $\Delta H_{\rm f}$, calculate the enthalpy change of reaction in equation 5.1. enthalpy change of reaction = kJ mol⁻¹ [3] (b) Under certain conditions nitrogen reacts with oxygen to make N₂O. $$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$ equation 5.2 The enthalpy profile diagram for this reaction is shown in Fig. 5.3. Fig. 5.3 (i) Calculate the enthalpy change when $240\,\mathrm{dm^3}$ of $\mathrm{N_2O}(\mathrm{g})$, measured at room temperature and pressure, is formed from $\mathrm{N_2}$ and $\mathrm{O_2}$. (ii) What is the enthalpy change of formation, $\Delta H_{\rm f}$, of N₂O(g)? $$\Delta H_{\rm f}$$ = kJ mol⁻¹ [1] Fig. 5.3 (repeated) (iii) The reaction in equation 5.2 is reversible. $$2N_2(g) + O_2(g) \rightleftharpoons 2N_2O(g)$$ equation 5.2 Calculate the activation energy, $\boldsymbol{E}_{\mathrm{a}}$, for the reverse reaction. $$E_{\rm a}$$ (reverse reaction) = kJ mol⁻¹ [1] | (c) | Describe and explain, using equations, how the concentration of ozone in the stratosphere is maintained. | |-----|--| | | | | | | | | | | | [2] | | (d) | In the stratosphere, NO catalyses the breakdown of ozone. | | | Write two equations to show how NO catalyses this breakdown. | | | | | | [2] | | | [Total: 11] |