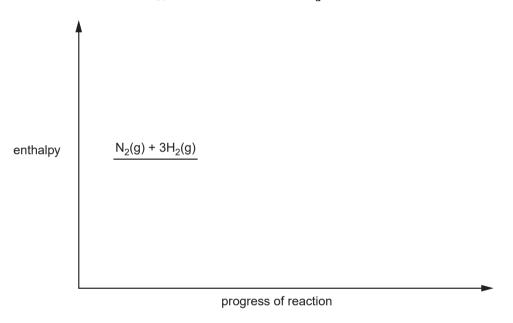
- 1 The uses of catalysts have great economic and environmental importance. For example, catalysts are used in ammonia production and in catalytic converters.
 - (a) Nitrogen and hydrogen react together in the production of ammonia, NH₃.


$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ mol}^{-1}$

The activation energy for the forward reaction, E_a , is +250 kJ mol⁻¹.

(i) Complete the enthalpy profile diagram for this reaction between nitrogen and hydrogen.

Include the

- products
- enthalpy change of reaction, ΔH
- activation energy for the forward reaction, E_a.

(ii) What is the value of the enthalpy change of formation of ammonia?

answer =kJ mol⁻¹ [1]

[3]

(iii) The reaction between nitrogen and hydrogen can be catalysed.

Suggest a possible value for the activation energy of the **catalysed** forward reaction.

answer = kJ mol⁻¹ [1]

(iv) What is the value of the activation energy for the uncatalysed **reverse** reaction (the decomposition of ammonia into nitrogen and hydrogen)?

answer = kJ mol⁻¹ [1]

(b)	In a	catalytic converter, nitrogen monoxide reacts with carbon monoxide.
	(i)	Write the equation for this reaction.
	(ii)	Outline the stages that allow nitrogen monoxide and carbon monoxide to react in a catalytic converter.
		[3]
(c)	Scie	entists monitor pollutant gases in the atmosphere.
	(i)	State two modern analytical techniques that scientists can use to monitor environmenta pollution.
		[2]
	(ii)	Explain why it is important to establish international cooperation to reduce pollution levels.

			reaction		enthalpy change of reaction /kJ mol ⁻¹				
		The data below can be used to calculate the enthalpy change of formation, $\Delta H_{\rm f},$ of ${\rm N_2O(g)}.$							
		Suggest	why it is not possib	le.					
	(i)	It is not p	ossible to measure	the enthalpy	change of formation of N ₂ O(g) d	irectly.			
			$N_2(g)$	+ ½O ₂ (g)	$\rightarrow N_2O(g)$				
	The equation for the reaction that gives the enthalpy change of formation, $\Delta H_{\rm f}$, of N ₂ O(g) is as follows.								
(e)	Hess' law can be used to calculate enthalpy changes of reaction.								
	over	rall	+	$\rightarrow 20_2$		[3]			
	step 2		NO ₂ +						
	step	1	NO + O ₃	→	+				
	Complete the equations below that describe how NO contributes to ozone depletion.								
(d)	In the stratosphere, nitrogen monoxide, NO, is linked with ozone depletion.								

Calculate $\Delta H_{\rm f}$ for N₂O(g).

 $C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$

 $C(s) + N_2O(g) \rightarrow CO(g) + N_2(g)$

$$\Delta H_{\rm f}$$
 = kJ mol⁻¹ [2]

-193

-111

[Total: 19]

- 2 Methane and ethane are important fuels.
 - (a) Methane could be manufactured by the reaction between carbon dioxide and hydrogen.

$$\mathrm{CO_2(g)} \ + \ 4\mathrm{H_2(g)} \ \longrightarrow \ \mathrm{CH_4(g)} \ + \ 2\mathrm{H_2O(g)}$$

Using the table of bond enthalpies, calculate the enthalpy change of reaction for this manufacture of methane.

bond	average bond enthalpy /kJ mol ⁻¹
C–H	+415
H–H	+436
C=O	+805
O–H	+464

enthalpy change of reaction = kJ mol⁻¹ [3]

(b)		hane is a greenhouse gas. Scientists are concerned that the concentration of methane ir atmosphere is slowly increasing.
	(i)	Explain how atmospheric methane molecules can contribute to global warming.
		[2]
	(ii)	One way that scientists hope to minimise global warming is by developing Carbon Capture and Storage, CCS, techniques.
		Describe two of these CCS techniques.
		[2]

- (c) Ethane reacts with bromine in the presence of ultraviolet radiation to form many organic products.
 - (i) Two of these products are bromoethane and hydrogen bromide.

Describe the mechanism of the reaction between ethane and bromine that forms bromoethane and hydrogen bromide.

Include in your answer

- the type of bond fission that occurs
- equations for each step of the reaction
- the name of each step of the reaction.

	Your answer needs to be clear and well organised using the correct terminology.
	[7]
(ii)	Give two reasons why there are many organic products of the reaction between bromine and ethane.
	[2]

[Total: 16]

(i)	Write the equation for the aerobic resp	
	write the equation for the delebie resp	piration of C ₆ H ₁₂ O ₆ .
ii)	Explain, in terms of bond breaking and	d bond forming, why this reaction is exoth
ıne	table snows some enthalpy changes o	$\Delta H_{\rm c}$.
	substance	$\Delta H_{\rm c}$ / kJ mol ⁻¹
	C(s)	-394
	H ₂ (g)	-286
	$C_6H_{12}O_6(s)$	-2801
		ongo of combustion AU2
/i\	What is meant by the term enthalny ch	
(i)	What is meant by the term enthalpy ch	iange or combustion, ΔΠ _C !
(i)	What is meant by the term enthalpy ch	iange or combustion, ΔΠ _c :
		The table shows some enthalpy changes o substance C(s) H ₂ (g)

(ii)	The enthalpy change of formation, $\Delta H_{\rm f}$, of glucose, ${\rm C_6H_{12}O_6}$, cannot be determined directly. The equation for this enthalpy change is shown below.
	$6C(s) + 6H_2(g) + 3O_2(g) \rightarrow C_6H_{12}O_6(s)$
	Suggest why the enthalpy change of formation of $\mathrm{C_6H_{12}O_6}$ cannot be determined directly.
	[1]
iii)	Use the $\Delta H_{\rm c}$ values in the table to calculate the enthalpy change of formation of ${\rm C_6H_{12}O_6}.$
	$\Delta H_{\rm f} =$ kJ mol $^{-1}$ [3
	[Total: 9

nitr	ogen	and oxygen.
		$N_2(g) + O_2(g) \rightarrow 2NO(g)$ $\Delta H = +66 \text{ kJ mol}^{-1}$
Thi	s rea	ction is endothermic.
(a)	(i)	Explain the meaning of the term <i>endothermic</i> .
		[1]
	(ii)	What is the value for the enthalpy change of formation of nitrogen monoxide?
		answer = kJ mol ⁻¹ [1]
(b)	(i)	Complete the enthalpy profile diagram for the reaction between nitrogen and oxygen.
		On your diagram
		 add the product label the activation energy as E_a label the enthalpy change as ΔH.
		enthalpy $\frac{N_2(g) + O_2(g)}{}$
		reaction pathway [3]
	(ii)	Explain the meaning of the term activation energy.
		P.4.1

Nitrogen monoxide is an atmospheric pollutant, formed inside car engines by the reaction between

(c)	She She	search chemist investigates the reaction between nitrogen and oxygen. mixes nitrogen and oxygen gases in a sealed container. then heats the container at a constant temperature for one day until the gases reach a amic equilibrium.
	(i)	Explain, in terms of the rate of the forward reaction and the rate of the backward reaction, how the mixture of $N_2(g)$ and $O_2(g)$ reaches a dynamic equilibrium containing $N_2(g)$, $O_2(g)$ and $NO(g)$.
		[2]
	(ii)	The research chemist repeats the experiment at the same temperature using the same initial amounts of $N_2(g)$ and $O_2(g)$. This time she carries out the experiment at a much higher pressure.
		Suggest why
		 much less time is needed to reach dynamic equilibrium the composition of the equilibrium mixture is the same as in the first experiment.
		[5]
	(iii)	The reaction between nitrogen and oxygen in a car engine does not reach a dynamic equilibrium.
		Suggest why not.

(d)	Nitr	ogen monoxide is a radical.								
		/hat does this tell you about a molecule of nitrogen monoxide?								
(e)	Oxi	des of nitrogen, NO _x , are atmospheric pollutants.								
	(i)	Nitrogen monoxide reacts with oxygen to form NO ₂ .								
		Write an equation for the formation of NO ₂ from nitrogen monoxide and oxygen.	[1]							
	(ii)	Aeroplane engines produce nitrogen monoxide.	L • J							
		Describe, with the aid of equations, how nitrogen monoxide catalyses ozone depleti the stratosphere.	on in							
			[3]							
	(iii)	Outline the use of infrared spectroscopy in identifying air pollutants such as NO_x .								
			[2]							

[Total: 21]

5	An important reaction in the manufacture of nitric acid is the catalytic oxidation of ammonia.					
		$4NH_3(g) + 5O_2(g) \implies 4NO(g) + 6H_2O(g)$ $\Delta H = -909 \text{ kJ mol}^{-1}$				
	(a)	Low pressures and low temperatures would give the maximum equilibrium yield of NO.				
		Explain why.				
		[2]				
	(b)	The actual conditions used in the catalytic oxidation of ammonia include 900 °C and are increase in pressure.				
		Suggest why these conditions are a compromise.				
		[3]				
	(c)	A factory makes 2.50×10^5 mol of NO a day.				
		(i) How much energy is released every day?				
		energy released =kJ [1				
		(ii) Suggest how this energy can be used to reduce the cost of making NO.				
		[Total: 7]				