1. Bond breaking absorbs energy

AND bond making releases energy
ALLOW bond breaking is endothermic
AND bond making is exothermic
More energy released than absorbed
ALLOW exothermic change transfers more energy than endothermic change
OR bond making transfers more energy than bond breaking
OR '(the sum of the) bond enthalpies in the products is greater
than the (sum of the) bond enthalpies in the reactants'
$\boldsymbol{O R}$ '(the sum of the) bond enthalpies of the bonds made is greater than (the sum of) the bond enthalpies of the bonds broken'
IGNORE reference to strong and weak bonds
IGNORE enthalpy of products is less than enthalpy of reactants
2. Respiration

IGNORE anaerobic
3. (i) $100 \times 4.18 \times 17.3 \checkmark$

ALLOW 7231 J
7.23 (kJ)

ALLOW 7.23 with no working out
ALLOW from 7.2 up to calculator value of 7.2314
ALLOW from 0.060 up to calculator value for 1 mark (i.e. $E C F$ from use of $m=0.831$ in first stage)

IGNORE sign
(ii) $\quad M_{\mathrm{r}}=180 \checkmark$
amount $=4.62 \times 10^{-3}(\mathrm{~mol}) \checkmark$
ALLOW 4.6×10^{-3} OR 4.62×10^{-3}
OR 4.617×10^{-3} up to calculator value
DO NOT ALLOW 0.005
ALLOW ECF from wrong M_{r}
(iii) $\Delta H_{\mathrm{c}}=1560(\mathrm{~kJ})$ OR $1570(\mathrm{~kJ})$ but answer must be to 3 sig fig

ALLOW ECF from 'answer to (i) \div answer to (ii)' but answer must be to 3 sig fig
minus sign
minus mark is an independent mark
4. $+1250 \checkmark$

ALLOW full marks for -2830 with no working out $\checkmark \checkmark \checkmark$
$+(-394 \times 6)+(-286 \times 6)$ OR -4080
$-2830 \checkmark$
ALLOW for 2 marks:
+2830 cycle wrong way around
OR 1400 OR 860
$\boldsymbol{O R}-5330 \boldsymbol{O R}+5330$
one value not $\times 6$

OR $+570 \checkmark \checkmark \quad$ correct cycle but not $\times 6$
ALLOW for 1 mark:
-1400 OR - 860 cycle wrong way around and one value not $\times 6$
OR $-570 \quad$ cycle wrong way around and not $\times 6$
$\boldsymbol{O R}-1930$ OR $+1930 \checkmark$ wrong sign and not $\times 6$
Note: There may be other possibilities.

5. Any two from the following:

Heat released to the surroundings \checkmark
ALLOW heat loss
Incomplete combustion OR incomplete reaction
OR not everything burns
IGNORE reference to evaporation
Non-standard conditions
6. (i) Acid \checkmark

ALLOW correct formula if no name given:
e.g. $\mathrm{H}_{3} \mathrm{PO}_{4}$ OR $\mathrm{H}_{2} \mathrm{SO}_{4}$ OR H^{+}

ALLOW correct name of acid even if an incorrect formula is used
IGNORE heterogeneous OR homogeneous
(ii) The position of equilibrium will shift so as to minimise the effect of any change in conditions

DO NOT ALLOW 'reaction shifts'
The idea of a shift in equilibrium is essential
(iii) Low temperature AND high pressure \checkmark

One mark for conditions.
This mark is independent of the reasons for conditions
Low temperature because the (forward) reaction is exothermic
One mark for reason for the chosen temperature
High pressure because there are fewer moles (of gas) on the right hand side
One mark for reason for the chosen pressure
ALLOW fewer moles of products
(iv) (60 atmosphere pressure is a) high pressure may be too expensive OR may cause safety problems
($300{ }^{\circ} \mathrm{C}$ is sufficiently high) to give a fast rate of reaction
without shifting equilibrium to the left
OR compromising equilibrium yield
7. The enthalpy change for the complete combustion
of 1 mol (of a substance)
ALLOW energy change for combustion in excess oxygen $\boldsymbol{O R}$ energy released during complete combustion OR energy change for combustion in excess air
NOT energy required
This mark is not stand alone but must relate to statement about an enthalpy change even if the statement was not awarded a mark
8. (i) $56.430(\mathrm{~kJ}) \checkmark$
(ii) $\quad M_{\mathrm{r}}\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right]=88.0$
$n=0.0200 \mathrm{~mol}$
ALLOW 88
ALLOW 0.02 OR ecf from wrong M_{r}
ALLOW full marks for 0.02 with no working out
(iii) $\quad(-) 2821.5 \checkmark$
$=(-) 2820(3 \mathrm{SF})$
correct minus sign
ALLOW correct substitution into formula(b)(i) \div (b) (ii) e.g. $56.4 \div 0.02$ this is essentially a mark for the working
ALLOW ecf from i.e. answer from (b)(i) \div (b)(ii)
The minus mark is stand alone and is independent of the numerical answer
9. (i) pressure: 100 kPa OR 101 kPa AND
temperature: $298 \mathrm{~K} \mathrm{OR} 25^{\circ} \mathrm{C} \checkmark$
units needed
ALLOW 1 bar OR 1 atm OR 760 mmHg
ALLOW any stated temperature so for example 100 kPa and $40^{\circ} \mathrm{C}$ would be credited with a mark
IGNORE any reference to moles or concentration
(ii) $\quad 6 \mathrm{C}(\mathrm{s})+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})$

ALLOW graphite / gr
(iii) many different hydrocarbons would form

OR activation energy too high
OR reaction too slow
OR they don't react together \checkmark
ALLOW can form different isomers $\boldsymbol{O R}$ can form different structures
IGNORE reaction may be reversible
(iv) $6 \times-394+7 \times-286$ shown OR calculated as -4366
-4366 and -4163 added OR subtracted \checkmark
correct answer $-4366-(-4163)=-203$
ALLOW THREE marks for -203 on its own with no working out or written on the answer line
ALLOW TWO marks for $+203,+3483,+1513,+1767$ or -8529 on its own with no working out
ALLOW ONE mark for-3483, -1513, -1767 or
+8529 on its own with no working out
units NOT needed
Positive sign not needed for endothermic answers
10. (i) $\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \checkmark$
$\mathrm{ClO}+\mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{O}_{2} \checkmark$
overall: $\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2}$

OR

$\mathrm{Cl}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}+\mathrm{HCl}$
$\mathrm{CH}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}$
overall: $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$
Marks must come from one or other of the radical process and not from both of them.
If two processes are described then an incorrect step in one process will contradict a correct step in the other process.
ALLOW overall equation mark even if the steps are
wrong
the radicals do NOT need a single dot
IGNORE any state symbols
ALLOW
$\mathrm{Cl}+\mathrm{O}_{3} \rightarrow \mathrm{ClO}+\mathrm{O}_{2} \checkmark$
$\mathrm{ClO}+\mathrm{O}_{3} \rightarrow \mathrm{Cl}+2 \mathrm{O}_{2}$
overall: $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
ALLOW any saturated hydrocarbon including cyclic ALLOW ecf for second step and overall reaction if wrong hydrocarbon used e.g. $\mathrm{C}_{2} \mathrm{H}_{4}$ is used in first step
(ii) $\Delta \mathrm{H}$ shown and products below reactants
E_{a} shown \checkmark
E_{c} shown $<\mathrm{E}_{\mathrm{a}} \checkmark$

NOT double headed arrows but apply ecf for more than one double headed arrow
ALLOW one mark if two correctly labelled curves are drawn but the arrows are not shown or are incorrectly drawn The arrows must be positioned as closely as possible to the maximum height of the curves but allow some degree of bod
11. (i) bond breaking is endothermic/
energy has to be put in to break a bond (1)
(ii) bonds broken: $3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+1.5(\mathrm{O}=\mathrm{O})=2781 \mathrm{~kJ}(\mathbf{1})$
bonds made: $2(\mathrm{C}=\mathrm{O})+4(\mathrm{O}-\mathrm{H})=3470 \mathrm{~kJ}(1)$
$\Delta H_{\mathrm{c}}=-689\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(\mathbf{1})$
3
12. (a) (i) (heat/energy change) when 1 mole of substance is formed (1) from its elements (1)
(ii) $1 \mathrm{~atm} / 101 \mathrm{kPa}$ and a stated temperature $/ 25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ (1) 1
(iii) $\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad 2$ balanced equation forming $1 \mathrm{~mol} \mathrm{CO}(\mathbf{1})$ state symbols (1)
(iv) cycle drawn/sum of ΔH (products) $-\Delta H$ (products) (1) $-75-242+\mathrm{x}=-110$ (1) $\Delta H=(+) 207 \mathrm{~kJ} \mathrm{~mol}^{-1}(\mathbf{1})$
(b) production of margarine/ammonia/Haber process (1) 1
13. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
formulae \checkmark
balancing
ignore state symbols
14. (enthalpy/ energy/ heat change) when 1 mole of substance/ element/ compound \checkmark (NOT absorbed) is completely burnt/ burnt in excess oxygen under standard conditions (if conditions stated they must be correct) \checkmark
15. (i) (enthalpy change) when 1 mole of compound is formed from the constituent elements
(ii) $\quad 6 \mathrm{C}(\mathrm{s})+7 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{14}(\mathrm{l})$ correct formulae and balancing tate symbols
(iii) temperature $25^{\circ} \mathrm{C} / 298 \mathrm{~K} /$ a stated temperature (if justified) pressure $1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa}$
16. diagram to show lines to show energy level at start above that at end of reaction ΔH labelled between reactants and products E_{a} labelled from reactants to top of energy 'hump'
17. correct Hess' cycle \checkmark
$x-890=-572-394 \checkmark$
$x=-76\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
18. (i) $1652 / 4=413\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(ii) $(\mathrm{C} \square \mathrm{C})+6(\mathrm{C} \square \mathrm{H})=2825$
$(\mathrm{C} \square \mathrm{C})=2825-6(413)=347\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$
19. (a) (a reaction) that releases energy/ (a reaction) that releases heat/ a reaction with a negative $\Delta \mathrm{H}$ (1)
(b) (i) diagram to show upward hump (1)
$\mathrm{CO}_{2}+(2) \mathrm{H}_{2} \mathrm{O} /$ carbon dioxide and water below reactants (1)
(ii) E_{a} marked (1)
if an arrowhead is included, it must be upwards
20. (a) (heat/ energy change) when 1 mole of substance is formed (1)
from its elements (1)
(b) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$
balanced equation (1)
state symbols (1)
(c) cycle drawn/ sum of enthalpy changes products - sum of enthalpy changes reactants (1)
$-75-242+x=-110(1)$
$\Delta \mathrm{H}=207\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)$
(d) any industrial use, examples include
manufacture of ammonia/ for Haber process
manufacture of margarine/ hydrogenation of alkenes
21. (i) to break a bond energy has to be put in/ breaking bonds is endothermic
(ii) energy needed to break 1 mole of bonds
in the substance in the gaseous state
(iii) bonds broken:
$3(\mathrm{C}-\mathrm{H})+(\mathrm{C}-\mathrm{O})+(\mathrm{O}-\mathrm{H})+11 / 2(\mathrm{O}=\mathrm{O})=2781 \mathrm{~kJ} \checkmark$
bonds made:
$2(\mathrm{C}=\mathrm{O})+4(\mathrm{O}-\mathrm{H})=3470 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\mathrm{c}}=-689 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
(iv) actual bond enthalpies may be different from average values conditions are not standard / methanol/ water is a liquid under standard conditions \checkmark
22. (i) (enthalpy/ energy change) when 1 mole of substance/compound formed from its elements
under standard conditions \checkmark (if conditions quoted must be correct - $25 \mathrm{C} / 298 \mathrm{~K}, 1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa}$)
(ii) $\quad \mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \checkmark \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$
balanced species
state symbols \checkmark
(iii) cycle \checkmark
$\mathrm{x}-791=-602-2(33)$
$\mathrm{x}=123$
23. (i) reaction carried out at 298 K and 1 atm pressure (or other relevant units) (1)
(ii) enthalpy change when 1 mole (1)
(of substance) is burnt in excess oxygen (1) 2
(iii) $4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ at lower energy than reagents (1)
E_{a} marked correctly (1)
$\Delta \mathrm{H}$ marked correctly (1) 3
24. (i) $4 \mathrm{C}(\mathrm{s})+5 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
reagents and products (1)
state symbols (1)
(ii) $4 \mathrm{C}+5 \mathrm{H}_{2} \xrightarrow{X} \mathrm{C}_{4} \mathrm{H}_{10}$
$4(-394) 5(-286)-2877$
$4 \mathrm{CO}_{2} 5 \mathrm{H}_{2} \mathrm{O}$
cycle (1)
correct values (1)
answer (1)
$\mathrm{X}-2877=4(-394)+5(-286)$
$\mathrm{X}=-129\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
25. (a) (i) bonds broken

$$
(\mathrm{N}-\mathrm{N})+(\mathrm{O}=\mathrm{O})+(\mathrm{N}-\mathrm{H})=163+497+4(390)=2220\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)
$$

bonds made
$(\mathrm{N} \equiv \mathrm{N})+4(\tilde{\mathrm{OH}})=945+4(463)=2797\left(K J m o \tilde{l}^{1}\right)$
broken $\Delta \mathrm{H}$ is +ve and made $\Delta \mathrm{H}$ is $-\mathrm{ve}(1)$
enthalpy of reaction $\stackrel{\sim}{=} 577\left(K J m o \tilde{l}^{1}\right)(1) 4$
(ii) $\frac{577}{32}=18.0(K J)(1)$
(b) $\mathrm{N}-\mathrm{N}$ bond is weak/ higher Ea for ammonia/ rate too slow for ammonia/ too much energy to break bonds in ammonia / hydrazine is liquid/ do not need pressurised containers/ more moles/ lots of gas produced
by hydrazine/ more energy per mole produced by hydrazine (1)
26. (a) (enthalpy change) when 1 mole of substance/ element/ compound (1)

NOT energy needed is completely burnt (1)
(b) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\mathrm{l})+41 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
correctly balanced equation (1)
state symbols (species must be correct) (1)
(c) (i) $\square \mathrm{H}=\mathrm{mc} \square \mathrm{T}$ (1)
$\square \mathrm{H}=50 \times 4.18 \times 12.8=2675(\mathrm{~J})=2.68(\mathrm{~kJ})(1)$
ignore sign
(ii) Mr propan-1-ol $=60$ (1)
number moles $=0.00167(1)$
(iii) $\square \mathrm{H}=\tilde{(1608}\left(K J m o \tilde{l}^{1}\right)$ (1)
(iv) heat losses (1)
thermal capacity of beaker ignored (1)
conditions were non-standard (1)
combustion could be incomplete (1)
propan-1-ol evaporates (1)
water evaporates (1)
27. (i) the enthalpy change when 1 mole of compound/species/substance is formed [mention of 1 mole of elements negates this mark] from its elements [NOT atoms/ions] (under standard conditions) 2
(ii) $25^{\circ} \mathrm{C} / 298 \mathrm{~K}$ and 1 atmos $/ 1 \times 10^{5} \mathrm{~Pa} \checkmark \quad 1$
28. $\mathrm{Pb}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{PbO}(\mathrm{s})$ (balancing for 1 mol of PbO) (state symbols) $\checkmark \mathrm{u} / \mathrm{c}$
29. (i) $\Delta \mathrm{H}_{\mathrm{f}}{ }_{\mathrm{f}}=-718-3(-217)$

$=-67\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)($ use of correct data \& multiplier	$\checkmark)$
	(correct signs
	(correct calculation of value
($\checkmark)$

some possible ecf values: $\quad+67 \quad 2$
$-501 \quad 2$
$+501 \quad 1$
$-1369 \quad 2$
$+1369 \quad 1$
(ii) $\quad \Delta \mathrm{H}^{\Theta}=-718+10+2(217)$
$=-274\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ (use of correct data \& multiplie
(correct signs
(correct calculation of value $\quad \checkmark$) 3
some possible ecf values: -57
[2]

-284	$[2]$	-294	$[2]$		
+424	$[1]$	+444	$[2]$	-491	$[2]$
-511	$[1]$	-708	$[1]$	-1142	$[2]$

for others, work through the calc: -[1] for each error.
30. $\quad \mathrm{I}-\mathrm{I}(\mathrm{g}) \rightarrow 2 \mathrm{I}(\mathrm{g})$ (state symbols \checkmark) (1 mole I_{2},
31. No mark scheme available
32. No mark scheme available
33. No mark scheme available

