Question			Answer	Marks	Guidance
1	(a)	(i)	$5 \mathrm{~mol} / \mathrm{molecules} \mathrm{(of} \mathrm{gas)} \mathrm{forms} 3 \mathrm{~mol} / \mathrm{molecules} \mathrm{(of} \mathrm{gas)} \checkmark$	1	ALLOW reaction forms fewer moles/molecules IF stated, numbers of molecules MUST be correct IGNORE comments related to ΔG OR disorder (even if wrong)
	(a)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$, award 2 marks $-164=(186+2 \times 206)-(4 \times S+238)$ OR $4 S=164+(186+2 \times 206)-238 \checkmark$ $S=(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark$	2	NOTE: IF any values are omitted, DO NOT AWARD any marks. e.g. -164 may be missing ALLOW FOR 1 mark -131 wrong final sign 49 wrong sign for 164 79.5 no use of 2 524 no division by 4 38 wrong sign for 186 -75 wrong sign for 206 250 wrong sign for 238 Any other number: CHECK for ECF from 1st marking point for expressions using ALL values with ONE error only e.g. one transcription error:, e.g. 146 for 164

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Answer \& Marks \& Guidance \\
\hline (a) \& (iii) \& \begin{tabular}{l}
NOTE: DO NOT ALLOW answer to 3(a)(ii) for \(\Delta G\) calculation \\
\(\Delta G\) calculation: \(\mathbf{2}\) marks
\[
\begin{aligned}
\& \Delta G=-234-298 \times-0.164 \\
\& =-185\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\vee}
\end{aligned}
\]
\[
\text { IGNORE units (even if wrong) }-185 \text { subsumes 1st mark) }
\] \\
Feasibility comment for negative \(\Delta \mathbf{G}\) answer: 1 mark (Forward) reaction is feasible / spontaneous
\[
\text { AND } \Delta \mathrm{G}<0 / \Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S}<0 \checkmark
\]
\end{tabular} \& 2

1 \& | ALLOW ΔG correctly calculated from 3 SF up to calculator value of -185.128 |
| :--- |
| ALLOW working in J, ie: $\begin{aligned} & \Delta G=-234000-298 \times-164 \\ & =-185000\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$ |
| ALLOW 1 mark for use of 25 OR mixture of kJ and J, $\text { e.g. } \Delta G=-234-25 \times-0.164=-229.9$ $\Delta G=-234-298 \times-164=+48638$ |
| ALLOW ECF if calculated value for ΔG is + ve Then 'correct' response for 3rd mark would be not feasible/not spontaneous AND $\Delta G>0 / \Delta H-T \Delta S>0$ | \\

\hline (a) \& (iv) \& | $(\Delta G=)-234-1427 \times \frac{-164}{1000}=0(\text { calculator } 0.028(\mathrm{~kJ}) \text { OR } 28(\mathrm{~J})) \checkmark$ |
| :--- |
| $2^{\text {nd }}$ mark only available if $\mathbf{1}^{\text {st }}$ mark has been awarded |
| (Above $1427 \mathrm{~K} / 1154^{\circ} \mathrm{C}$), reaction is not feasible/not spontaneous \checkmark OR 1427 K is maximum temperature that reaction happens | \& 2 \& | ALLOW (When $\Delta G=0$) $T=\frac{-234}{-0.164}=1427 \mathrm{~K} \mathrm{OR} \frac{-234000}{-164}=1427 \mathrm{~K}$ |
| :--- |
| For 2nd mark, IF $\Delta \mathrm{G}$ is +ve from (a)(iii) ALLOW ECF for: |
| Above 1427 K , reaction is feasible / spontaneous OR 1427 K is minimum temperature that reaction happens |
| IGNORE LESS feasible |
| IGNORE comparisons of the signs of $T \Delta S$ and ΔH, e.g IGNORE $T \Delta S$ is more negative than ΔH | \\

\hline
\end{tabular}

Question		Answer	Marks	Guidance
(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=57.6 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, award 6 marks IF answer $=57.6$ with incorrect units, award 5 mark Equilibrium concentrations (moles $\times 4$) 1 MARK $\mathrm{SO}_{2}=0.720\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\mathrm{O}_{2}=0.360\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ AND $\mathrm{SO}_{3}=3.28\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)^{\checkmark}$ Calculation of K_{c} and units $\begin{aligned} & K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \text { OR } \frac{3.28^{2}}{(0.720)^{2} \times(0.360)} \\ & =57.6 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark \end{aligned}$ At least 3SF is required	6	FULL ANNOTATIONS NEEDED IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from incorrect moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ AND SO_{2} ALL three concentrations required for this mark ALLOW ECF from incorrect concentrations NO ECF for numerical value with a square missing For K_{c}, ALLOW 3 significant figures up to calculator value of 57.64746228 correctly rounded For units, ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ DO NOT ALLOW dm³ ${ }^{3} \mathrm{~mol}$ ALLOW ECF from incorrect K_{c} expression for both calculation and units COMMON ERRORS 0.02943 marks + units mark from $\mathrm{SO}_{2}=0.820, \mathrm{O}_{2}=0.410, \mathrm{SO}_{3}=0.180(\mathrm{~mol})$
(b)	(ii)	(Pressure) decreases AND fewer molecules/moles \checkmark	1	For fewer moles, ALLOW $3 \mathrm{~mol} \rightarrow 2 \mathrm{~mol}$ ALLOW more moles of reactants

Question	Answer	Marks	Guidance
(b) (iii)	ΔH is negative / '- '/ -ve AND yield of SO_{3} decreases \checkmark	1	IGNORE exothermic and endothermic
$\text { (b) } \text { (iv) }$	IGNORE le Chatelier responses Each marking point is independent K_{c} K_{c} does not change (with pressure/ concentration) Comparison of conc terms with more O_{2} $\left[\mathrm{O}_{2}\right] /$ concentration of oxygen is greater OR denominator/bottom of K_{c} expression is greater \checkmark QWC: yield of SO_{3} linked to K_{c} (Yield of) SO_{3} is greater/increases AND numerator/top of K_{c} expression is greater/increases \checkmark	3	FULL ANNOTATIONS NEEDED ALLOW K_{c} only changes with temperature IF $1^{\text {st }}$ marking point has been awarded, IGNORE comments about ' K_{c} decreasing' or ' K_{c} increasing' and assume that this refers to how the ratio subsequently changes. i.e DO NOT CON $1^{\text {st }}$ marking point. IGNORE O_{2} is greater/increases ALLOW (Yield of) SO_{3} is greater/increases AND to reach/restore K_{c} value
	Total	19	

Question			Answer	Marks	Guidance
2	(a)	(i)	(entropy) decreases AND (solid/ice has) less disorder/ more order/ fewer ways of arranging energy/ less freedom/ less random molecules \checkmark	1	ORA decreases and reason required for mark ASSUME change is for freezing of water unless otherwise stated DO NOT ALLOW atoms are more ordered
	(a)	(ii)	(entropy) increases AND $\left(\mathrm{CO}_{2}\right)$ gas is formed \checkmark Could be from equation with $\mathrm{CO}_{2}(g)$	1	increases and reason required for mark ASSUME gas is CO_{2} unless otherwise stated BUT DO NOT ALLOW an incorrect gas (e.g. H_{2}) ALLOW more gas
	(a)	(iii)	entropy decreases AND $3 \mathrm{~mol} \mathrm{O}_{2}$ form $2 \mathrm{~mol} \mathrm{O}_{3}$ $\mathrm{OR} 3 \mathrm{O}_{2} \rightarrow 2 \mathrm{O}_{3}$ OR 3 mol gas form 2 mol gas	1	decreases and reason required for mark For mol, ALLOW molecules ALLOW multiples, e.g. $11 / 2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3} ; \quad \mathrm{O}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$ ALLOW $\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$ Note: DO NOT ALLOW 2 mol gas forms 1 mol gas unless linked to $\mathrm{O}_{2}+\mathrm{O} \rightarrow \mathrm{O}_{3}$ IGNORE reaction forms fewer moles/molecules

CARE: responses involve changes of negative values

Feasibility AND $\Delta \boldsymbol{G}$

Reaction becomes/is less feasible/not feasible
AND
ΔG increases
OR ΔG becomes/is less negative/more positive
OR $\Delta G>0$ OR $\Delta H-T \Delta S>0$
OR $\Delta H-T \Delta S$ becomes/is less negative/more positive
OR $\Delta H>T \Delta S \checkmark$
OR $T \Delta S$ becomes/is more negative than $\Delta H \checkmark$

Effect on $T \Delta S$

$T \Delta S$ becomes more negative OR $T \Delta S$ decreases
OR $-T \Delta S$ becomes more positive $\mathbf{O R}-T \Delta S$ increases
OR magnitude of $T \Delta S$ increases
OR |TAS| increases \checkmark

FULL ANNOTATIONS MUST BE USED

As alternative for 'less feasible'
ALLOW 'less spontaneous'
OR a comment that implies 'reaction no longer take place'

ALLOW for $\Delta \mathbf{G}$ increases

$\Delta \mathrm{G}<0$ only at low T
DO NOT ALLOW T T S > ΔH (comparison wrong way round)
NOTE: Last statement automatically scores 2nd mark ALSO
IGNORE significance
IGNORE magnitude for 1st marking point

DO NOT ALLOW $T \Delta S$ increases
IGNORE significance

APPROACH BASED ON TOTAL ENTROPY:

Feasibility with increasing temperature
Reaction becomes less feasible/not feasible AND
$\Delta S-\Delta H / T$ OR $\Delta S_{\text {total }}$ decreases/ less positive \checkmark

Effect on $\Delta H / T$

$\Delta H / T$ is less negative OR $\Delta H / T$ increases
OR $-\Delta H / T$ decreases
OR magnitude of $\Delta H / T$ decreases \checkmark

2	(c)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 75.962 OR 75.96 OR 76.0 OR 76, award 2 marks $\begin{aligned} & \Delta S=(33+3 \times 189)-(76+3 \times 131) \\ & =(+) 131\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$ $\begin{aligned} & \Delta G=115-(298 \times 0.131) \\ & =(+) 75.962 \text { OR } 75.96 \text { OR } 76.0 \text { OR } 76\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	DO NOT ALLOW -131 ALLOW ECF from incorrect calculated value of ΔS
2	(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=878$ OR 877.9 OR 877.86, award 2 marks (Minimum temperature when) $\Delta G=0$ OR $\Delta H-T \Delta S=0$ OR (For feasibility) $\Delta G=0$ OR $\Delta G<0$ OR $\Delta H-T \Delta S<0$ OR $T=\frac{\square H}{\square S} \checkmark$ $T=\frac{115}{0.131}=878 \mathrm{~K} \checkmark$	2	ALLOW total entropy statement: $\Delta S(\text { total })=0 \text { OR } \Delta S(\text { total })>0$ ALLOW ECF from incorrect calculated value of ΔS from 2(c)(i) ALLOW 878 up to calculator value of 877.862595 correctly rounded
			Total	9	

Question			er	Marks	Guidance
3	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 218, award 2 marks $\begin{aligned} & -256=(6 \times 205)+S\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)-(6 \times 214+6 \times 70) \\ & \text { OR S }\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)=-256-(6 \times 205)+(6 \times 214+6 \times 70) \\ & \text { OR }-256+474 \checkmark \\ & =218\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	IF there is an alternative answer, check to see if there is any ECF credit possible. Note that ALL 4 S values must be used for ECF \qquad ALLOW 1 mark for -218 ALLOW 1 mark for +730 (products - reactants) Note: -3190 for simple addition of products + reactants scores zero marks
		(ii)	$\begin{aligned} & \Delta G=+2879-298 \times-0.256 \checkmark \\ & =(+) 2955\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW 3 SF: 2960 to calculator value of 2955.288 Award 1 mark for the following: - $\quad \Delta G=2890$ to calculator value of 2885.4 $25^{\circ} \mathrm{C}$ used rather than 298 K : - $\quad \Delta G=79200$ to calculator value of 79167 Δ S not converted from $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ to $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ expressions with one transcription error: e.g. +2897 instead of $+2879 ; \quad 0.265$ instead of 0.256 - $\Delta G=2814.036$ use of 218 rather than -256 - Use of 'answer to (a)(i)'/1000 (by ECF)
		(iii)	ΔH is positive OR $\Delta H>0$ AND ΔS is negative OR $T \Delta S$ is negative OR $\Delta S<0$ OR $T \Delta S<0$ AND ΔG will always be positive OR $\Delta G>0 \checkmark$	1	ALLOW ΔH is endothermic for ΔH is +ve ALLOW ΔG will never be less than 0 DO NOT ALLOW S or H i.e. change in entropy, ΔS and change in enthalpy ΔH are essential

Quest	er	Marks	Guidance
(b)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=3.12 \times 10^{17} \mathrm{~g}$, award 2 marks amount of CO_{2} removed $=3.4 \times 10^{18} \times 6 / 2879$ OR $7.09 \times 10^{15}(\mathrm{~mol})$ mass of $\mathrm{CO}_{2}=44.0 \times 7.09 \times 10^{15}=3.12 \times 10^{17} \mathrm{~g} \checkmark$	2	ALLOW 2 SF ($7.1 \times 10^{15}(\mathrm{~mol})$) up to calculator value of 7.085793678, correctly rounded ALLOW 2 SF $\left(3.1 \times 10^{17} \mathrm{~g}\right)$ up to calculator value, correctly rounded Correct units required for 2 nd mark e.g. $3.12 \times 10^{14} \mathrm{~kg} ; 3.12 \times 10^{11}$ tonne ALLOW 1 mark for 3.1×10^{17} with no unit ALLOW ECF from incorrectly calculated amount of CO_{2} provided that both 3.4×10^{18} AND 2879 have been used e.g. Omission of x 6 gives $1.181 \times 10^{15} \mathrm{~mol} \mathrm{CO}_{2}$ and $5.196 \times 10^{16} \mathrm{~g} \mathrm{CO}_{2}$
	Total	7	

Question			Answer	Marks	Guidance
4	(a)	(ii)	step 1: $\mathrm{NO}_{2}+\mathrm{O}_{3}$ LHS of step one \checkmark $\text { step 2: } \mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{\longrightarrow} \mathrm{NO}_{3}+\mathrm{O}_{2}$ rest of equations for step 1 AND step $2 \checkmark$ CHECK that each equation is balanced CARE: Step 1 AND Step 2 must add up to give overall equation In Step 2, IGNORE extra species shown on both sides, e.g. $\mathrm{NO}_{2}+\mathrm{NO}_{3}+\mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{O}_{2}$ Step 2 can only gain a mark when Step 1 is correct	2	State symbols NOT required For 'rest of equations', ALLOW other combinations that together give the overall equation, e.g.: $\longrightarrow \mathrm{NO}_{5}$ $\begin{array}{ll} & \longrightarrow \mathrm{NO}_{2}+\mathrm{NO}_{5} \\ \text { e.g.: } & \longrightarrow \mathrm{NO}+2 \mathrm{O}_{2}+\mathrm{O}_{2} \end{array}$ $\mathrm{NO}+\mathrm{NO}_{2}+\mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$ DO NOT ALLOW use of algebraic species, e.g. X
	(b)	(i)	3 gaseous moles $\longrightarrow 2$ gaseous moles Less randomness OR becomes more ordered	2	ALLOW products have fewer gaseous moles ORA ALLOW 'molecules' instead of 'moles' ALLOW fewer ways of distributing energy OR fewer degrees of freedom OR fewer ways to arrange
		(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-148$ award 3 marks $\begin{aligned} & \Delta G=\Delta H-T \Delta S \checkmark \\ = & -198-(298 \times-168 / 1000) \\ = & -148\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	3	IF there is an alternative answer, check calculator value and working for intermediate marks by ECF 2nd mark subsumes 1st mark for $\Delta G=\Delta H-T \Delta S$ ALLOW -148 to calculator value of -147.936 ALLOW for 2 marks: $49866\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$: not converting ΔS from J to kJ (no $\div 1000$) $-193.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ use of 25 instead of 298

