Question			er	Mark	Guidance
1	(a)		process increase decrease $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$ \checkmark $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ \checkmark NH $\mathrm{H}_{4} \mathrm{Cl}(\mathrm{s})+\mathrm{aq} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$ \checkmark $4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$ \checkmark $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \checkmark All 5 correct $\longrightarrow \mathbf{2}$ marks $\mathbf{4}$ correct $\longrightarrow \mathbf{1}$ mark	2	
	(b)		$\Delta H:+$ AND bonds broken ΔS : + AND more random/more disorder/more ways of arranging energy	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within $\mathrm{H}_{2} \mathrm{O}$ molecules are broken IGNORE comments related to ΔG IGNORE comments related to ΔG
	(c)	(i)	$\begin{aligned} & \Delta \mathrm{S}=(3 \times 131+198)-(186+189) \checkmark \\ & \Delta S=(+) 216\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{aligned}$	2	ALLOW 1 mark for -216 (wrong sign) ALLOW 1 mark for -46 (131 instead of 3×131) ALLOW 1 mark for 594 (sign of 189)

Ques	er	Mark	Guidance
(c)	Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' \checkmark 4. manufacture of $\mathrm{HCl} /$ hydrochloric acid 5. reduction of metal ores/metal oxides	1-1	2 uses for one mark IGNORE hydrogenation of margarine
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109, award first 3 marks for calculation At $298 \mathrm{~K}, 91.2=176-T \Delta S$ $\Delta S\left(=\frac{176-91.2}{298}\right)=0.285\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$ OR $\Delta S\left(=\frac{176000-91200}{298}\right)=285\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)^{\checkmark}$ subsumes 1st marking point At $1000 \mathrm{~K}, \Delta \mathrm{G}=176-1000 \times 0.285$ $=-109\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{2}$ Reaction does take place (spontaneously) because $\Delta G<0$ OR ΔG is -ve \checkmark Note: If no value of ΔG, this mark cannot be awarded.	4	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758 ALLOW -109 up to calculator value correctly rounded, i.e. 108.6, -108.56, etc ALLOW ECF from incorrect ΔS, ie calculated value of ΔG from $\Delta G=176-1000 \times$ calculated value of ΔS Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note: If candidate has a $+\Delta G$ value, mark ECF, ie reaction does not take place because $\Delta G>0$ OR ΔG is +ve
	Total	11	

Question			Expected answers	Marks	Additional guidance
2	a		$\Delta G=\Delta H-T \Delta S \checkmark$	1	
	b			2	
	c		$\begin{aligned} & \Delta S=(4 \times 211+6 \times 189)-(4 \times 192+5 \times 205)^{\checkmark} \\ & \Delta S=(+) 185\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$	2	ALLOW ECF from working line above from a single error ------------------------- $(+) 3\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \quad \checkmark \quad(211+189)-(192+205)$ $-185\left(\mathrm{~J}^{-1} \mathrm{~mol}^{-1}\right) \quad \checkmark \quad$ incorrect sign
	d		With increasing temperature $T \Delta S$ is more negative OR $T \Delta S$ decreases OR $-T \Delta S$ increases OR $\|T \Delta S\|$ increases OR magnitude of $T \Delta S$ increases \checkmark At high temperature $T \Delta S$ is more negative that ΔH OR at high $T, T \Delta S$ outweighs/is more significant than ΔH OR At low temperature $\Delta H-T \Delta S<0$ OR At high temperature $\Delta H-T \Delta S>0 \checkmark$	2	ANNOTATIONS MUST BE USED DO NOT ALLOW just $T \Delta S$ increases DO NOT ALLOW At high $T,{ }^{-}-T \Delta S$ is greater (than ΔH)' APPROACH BASED ON TOTAL ENTROPY: With increasing temperature $\Delta H I T$ is less negative OR $\Delta H I T$ increases OR $-\Delta H / T$ decreases OR $\|\Delta H / T\|$ decreases OR magnitude of $\Delta H / T$ decreases \checkmark ALLOW at high temperatures $\Delta S-\Delta H / T<0$

Question		Expected answers	Marks	Additional guidance
				OR ΔS is more negative than $\Delta H / T$ OR Δ S outweighs/ is more significant than $\Delta H / T$
e	e	$\begin{aligned} & \text { (For feasibility,) } \\ & \Delta G<0 \\ & \text { OR } \Delta G=0 \\ & \text { OR } 0<\Delta H-T \Delta S \\ & \text { OR } 0=\Delta H-T \Delta S \\ & \text { OR } 0=493-T \times 543 / 1000 \checkmark \\ & T=\frac{\Delta H}{\Delta S}=493 \times 1000 / 543 \checkmark \\ & =908 \mathrm{~K} \checkmark \\ & \text { Units of temperature are required } \end{aligned}$	3	ALLOW total entropy statement: $\Delta S(\text { total })=0 \text { OR } \Delta S(\text { total })>0$ ALLOW $0=493-T \times 543 \checkmark$ i.e. This mark focuses on $\Delta G O R \Delta H-T \Delta S$ being $=0$ and NOT on conversion of ΔS value into $\mathrm{kJ} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in ${ }^{\circ} \mathrm{C}$: i.e. ALLOW by subtraction of 273 : $635,634.9,634.91^{\circ} \mathrm{C}$ ALLOW by subtraction of 273.15: 635, $634.8,634.77^{\circ} \mathrm{C}$ up to calculator value correctly rounded ALLOW C for ${ }^{\circ} \mathrm{C}$; ${ }^{\circ} \mathrm{K}$ for K IF ΔS has not been converted to kJ , DO NOT ALLOW 2nd mark BUT ... ALLOW calculated answer $=493 / 543=0.91 \mathrm{~K}$ (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the statements required for 1st marking point
		Total	10	

Question		Answer	Mark	Guidance
3	(a)	A: forms fewer moles/molecules of gas \checkmark B: forms gas from a liquid \checkmark C: forms liquid from gases \checkmark D: forms more moles/molecules of gas \checkmark	4	Note: Responses must imply the key difference between the sides of the equation IGNORE comments about C(s)
	(b)	$\begin{aligned} & \Delta S=\Sigma S \text { (products) }-\Sigma S(\text { reactants }) \\ & =40+214-89=165\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \\ & =0.165\left(\mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \checkmark \end{aligned}$ At $25^{\circ} \mathrm{C}, \Delta \mathrm{G}=+178-298 \times 0.165 \checkmark$ $=(+) 129 \checkmark$ units: $\mathrm{kJ} \mathrm{mol}^{-1} \checkmark$ OR (+)129,000 \checkmark units: $\mathrm{J} \mathrm{mol}^{-1} \checkmark$ As $\Delta G>0$, reaction is not feasible OR as $\Delta G>0, \mathrm{CaCO}_{3}$ is stable Minimum temperature for feasibility when $\begin{aligned} & 0=\Delta H-T \Delta S \text { OR } \Delta H=T \Delta S \text { OR } T=\frac{\Delta H}{\Delta S} \\ & =\frac{178}{0.165}=1079 \mathrm{~K} \text { OR } 806{ }^{\circ} \mathrm{C} \end{aligned}$ The units must be with the stated temperature	1	ANNOTATE WITH TICKS AND CROSSES, etc Mark is for the working line: $40+214-89=165$ UNITS have a separate mark ALLOW 129 to calculator value of 128.83 DO NOT ALLOW 128 (incorrect rounding) IF $25^{\circ} \mathrm{C}$ used rather than 298 K , credit by ECF, calculated ΔG $=174$ to calculator value of 173.875 ENTROPY APPROACH- ALLOW At $25^{\circ} \mathrm{C}, \Delta S_{\text {total }}=0.165-\frac{178}{298} \checkmark$ $\begin{aligned} & =-0.432 \checkmark \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \checkmark \\ & \text { OR }-432 \checkmark \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \checkmark \end{aligned}$ As $\Delta S<0$, reaction is not feasible \checkmark ENTROPY APPROACH-- Minimum temperature for feasibility when $0=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }} \text { OR } \quad \Delta S_{\text {system }}=\frac{\Delta H}{T}$ ALLOW 1080 K up to calculator value of 1078.787879, correctly rounded, eg 1078.79 is correct value to 6SF DO NOT ALLOW 1078 (incorrect rounding) IF 1079 K is given and additional temperature in ${ }^{\circ} \mathrm{C}$ is incorrect, IGNORE ${ }^{\circ} \mathrm{C}$ temperature (and vice versa)
		Total	11	

