Question		ion	er	Mark	Guidance
1	(a)		processincrease decrease $C_2H_5OH(I) \rightarrow C_2H_5OH(g)$ ✓ $C_2H_2(g) + 2H_2(g) \rightarrow C_2H_6(g)$ ✓ $NH_4CI(s) + aq \rightarrow NH_4CI(aq)$ ✓ $4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$ ✓ $2CH_3OH(I) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(I)$ ✓All 5 correct \longrightarrow 2 marks4 correct \longrightarrow 1 mark	2	
	(b)		ΔH : + AND bonds broken \checkmark ΔS : + AND more random/more disorder/more ways of arranging energy \checkmark	2	Sign and reason required for each mark ALLOW forces of attraction/hydrogen bonds are overcome DO NOT ALLOW response in terms of bonds breaking AND bond making (for melting bonds are just broken) DO NOT ALLOW responses implying that bonds within H ₂ O molecules are broken IGNORE comments related to ΔG IGNORE comments related to ΔG
	(c)	(i)	$\Delta S = (3 \times 131 + 198) - (186 + 189) \checkmark$ $\Delta S = (+)216 (J \text{ K}^{-1} \text{ mol}^{-1}) \checkmark$	2	ALLOW 1 mark for –216 (wrong sign) ALLOW 1 mark for –46 (131 instead of 3 x 131) ALLOW 1 mark for 594 (sign of 189)

Question	er	Mark	Guidance
(c)	 Two from points below: 1. fuel OR fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats 3. manufacture of ammonia OR 'Haber process' ✓ 4. manufacture of HCl/hydrochloric acid 5. reduction of metal ores/metal oxides 	1	2 uses for one mark IGNORE hydrogenation of margarine
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -109, award first 3 marks for calculation		IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	At 298 K, 91.2 = $176 - T\Delta S \checkmark$		ANNOTATE WITH TICKS AND CROSSES, etc
	$\Delta S (= \frac{176 - 91.2}{298}) = 0.285 \text{ (kJ K}^{-1} \text{ mol}^{-1})$ OR $\Delta S (= \frac{176000 - 91200}{298}) = 285 \text{ (J K}^{-1} \text{ mol}^{-1}) \checkmark$ subsumes 1st marking point		ALLOW 0.285 (3 SF) up to calculator value of 0.284563758 ALLOW 285 (3 SF) up to calculator value of 284.563758
	At 1000 K, $\Delta G = 176 - 1000 \times 0.285$ = -109 (kJ mol ⁻¹) \checkmark		ALLOW –109 up to calculator value correctly rounded, i.e. – 108.6, –108.56, etc
			ALLOW ECF from incorrect ΔS , <i>ie</i> calculated value of ΔG from $\Delta G = 176 - 1000 \text{ x}$ calculated value of ΔS
	Reaction does take place (spontaneously) because $\Delta G < 0$ OR ΔG is -ve \checkmark Note : If no value of ΔG , this mark cannot be awarded.	4	Answer and reason BOTH needed for mark ALLOW reaction is feasible for 'reaction does take place' Note : If candidate has a + ΔG value, mark ECF , ie reaction does not take place because $\Delta G > 0$ OR ΔG is +ve
	Total	11	

Question		on	Expected answers	Marks	Additional guidance
2	а		$\Delta G = \Delta H - T \Delta S \checkmark$	1	
	b		process sign		
			$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$		
			$NaCl(s) + (aq) \longrightarrow NaCl(aq) \qquad +$		
			$H_2O(I) \longrightarrow H_2O(s)$ -		
			$Mg(s) + H_2SO_4(aq) \longrightarrow MgSO_4(aq) + H_2(g) \qquad \clubsuit$		
			$CuSO_4(s) + 5H_2O(I) \longrightarrow CuSO_4 \bullet 5H_2O(s)$ -		
			All 5 correct \longrightarrow 2 marks $\checkmark \checkmark$ 4 correct \longrightarrow 1 mark \checkmark	2	
	С		$\Delta S = (4 \times 211 + 6 \times 189) - (4 \times 192 + 5 \times 205) \checkmark$		
			$\Delta S = (+)185 (J \text{ K}^{-1} \text{ mol}^{-1}) \checkmark$	2	ALLOW ECF from working line above from a single error
					COMMON ERRORS (+)3 (J K ⁻¹ mol ⁻¹) \checkmark (211 + 189) - (192 + 205) - 185 (J $^{-1}$ mol ⁻¹) \checkmark incorrect sign
	d		With increasing temperature		ANNOTATIONS MUST BE USED
			OR -TAS increases $OR TAS$ decreases		
			OR magnitude of $T \Delta S$ increases \checkmark		DO NOT ALLOW just $T \Delta S$ increases
			At high temperature $T \Delta S$ is more negative that ΔH OR		DO NOT ALLOW At high <i>T</i> , ' $-T\Delta S$ is greater (than ΔH)'
			at high T, T ΔS outweighs/is more significant than ΔH		APPROACH BASED ON TOTAL ENTROPY:
			OR		With increasing temperature
			At low temperature $\Delta H - T\Delta S < 0$	2	$\Delta H/T$ is less negative OR $\Delta H/T$ increases
			OR	2	OR $-\Delta H/I$ decreases OR $ \Delta H/I $ decreases
			At high temperature $\Delta H = I\Delta S > 0 \checkmark$		ALLOW at high temperatures
					$\Delta S - \Delta H/T < 0$

www.accesstuition.com

Questic	n Expected answers	Marks	Additional guidance
			OR ΔS is more negative than $\Delta H/T$ OR ΔS outweighs/ is more significant than $\Delta H/T$
e	(For feasibility,) $\Delta G < 0$ OR $\Delta G = 0$ OR $0 < \Delta H - T\Delta S$ OR $0 = \Delta H - T\Delta S$ OR $0 = 493 - T \times 543/1000 \checkmark$		ALLOW total entropy statement: $\Delta S(\text{total}) = 0 \text{ OR } \Delta S(\text{total}) > 0$ ALLOW $0 = 493 - T \times 543 \checkmark$ <i>i.e.</i> This mark focuses on $\Delta G \text{ OR } \Delta H - T\Delta S \text{ being } = 0$ and NOT on conversion of ΔS value into kJ K ⁻¹ mol ⁻¹
	$T = \frac{\Delta H}{\Delta S} = 493 \times 1000/543 \checkmark$ = 908 K \scaled Units of temperature are required	3	Mark temperature given on answer line ALLOW 3 SF up to calculator value 907.9189687 correctly rounded, e.g. 907.9, 907.92 ALLOW temperature in $^{\circ}$ C: i.e. ALLOW by subtraction of 273: 635, 634.9, 634.91 $^{\circ}$ C ALLOW by subtraction of 273.15: 635, 634.8, 634.77 $^{\circ}$ C up to calculator value correctly rounded ALLOW C for $^{\circ}$ C; $^{\circ}$ K for K IF Δ S has not been converted to kJ,
			DO NOT ALLOW 2nd mark BUT ALLOW calculated answer = 493/543 = 0.91 K (calculator: 0.907918968) ALLOW 2 marks only for absence of one of the
		Total 10	statements required for 1st marking point

Question		n	Answer	Mark	Guidance
3	(a)		 A: forms fewer moles/molecules of gas ✓ B: forms gas from a liquid ✓ C: forms liquid from gases ✓ D: forms more moles/molecules of gas ✓ 	4	Note: Responses must imply the key difference between the sides of the equation IGNORE comments about C(s)
	(b)		$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants})$ = 40 + 214 - 89 = 165 (J K ⁻¹ mol ⁻¹) = 0.165 (kJ K ⁻¹ mol ⁻¹) \checkmark At 25 °C, ΔG = +178 - 298 × 0.165 \checkmark = (+)129 \checkmark units: kJ mol ⁻¹ \checkmark OR (+)129,000 \checkmark units: J mol ⁻¹ \checkmark	1	ANNOTATE WITH TICKS AND CROSSES, etcMark is for the working line: $40 + 214 - 89 = 165$ UNITS have a separate markALLOW 129 to calculator value of 128.83DO NOT ALLOW 128 (incorrect rounding)IF 25 °C used rather than 298 K, credit by ECF, calculated ΔG = 174 to calculator value of 173.875
			As $\Delta G > 0$, reaction is not feasible OR as $\Delta G > 0$, CaCO ₃ is stable \checkmark Minimum temperature for feasibility when $0 = \Delta H - T\Delta S$ OR $\Delta H = T\Delta S$ OR $T = \frac{\Delta H}{\Delta S} \checkmark$ $= \frac{178}{0.165} = 1079$ K OR 806 °C \checkmark The units must be with the stated temperature	4	ENTROPY APPROACH
			Tot	al 11	