| Question Answer | | Marks | Guidance |
| :---: | :---: | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | (a) | $\left(K_{\mathrm{c}}=\right)$$\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}$
 $\left[\mathrm{CH}_{4}\right]^{2}$
 (b)(i)amount of $\mathrm{H}_{2}=3 \times 0.168$
 $=0.504(\mathrm{~mol}) \checkmark$ | Square brackets are essential
 State symbols not required.
 IGNORE incorrect state symbols |

Question					er		Marks	Guidance
(b)	(i)	Each column should have only one box ticked Correct ticks for $\mathrm{H}_{2}(\mathrm{~g})$ AND $\mathrm{I}_{2}(\mathrm{~g})$ AND $\mathrm{HI}(\mathrm{g}) \quad$ two marks $\checkmark \checkmark$ i.e. all three columns correct Ticks for two of $\mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{HI}(\mathrm{g})$ correct one mark \checkmark i.e. two columns correct					2	DO NOT ALLOW more than one box ticked in a column (response is a CON)
	(ii)	K_{c} is smaller AND (forward) reaction is exothermic $\mathbf{O R} \Delta H$ is negative \checkmark					1	Link to $\Delta H /$ exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
	(iii)	K_{c} is the same AND K_{c} is temperature dependent $\mathrm{OR} K_{\mathrm{c}}$ is not changed by pressure \checkmark					1	ALLOW K_{c} is only changed by temperature IGNORE same number of moles on both side
		Total					9	

Question		Answer	Marks	Guidance
3	(a)	(i)	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{CO}_{2}\right]^{2}\left[\mathrm{~N}_{2}\right]}{[\mathrm{CO}]^{2}[\mathrm{NO}]^{2}}$	
	(ii)	$\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	1	Square brackets required for ALL four concentrations

Guidance
 ANNOTATIONS MUST BE USED

IF there is an alternative answer, apply ECF by checking working for intermediate marks
APPLY ECF from incorrect starting $n(\mathrm{CO})$
By ECF, $n\left(\mathrm{~N}_{2}\right)=n\left(\mathrm{CO}_{2}\right) / 2$
For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value

Correct numerical answer with no working scores 4 marks

 ALLOW calculator value: 0.946745562 down to 0.95 (2SF),correctly rounded, e.g. 0.947
IGNORE units, even if incorrect

Common errors

1.893 marks use of $n\left(\mathrm{~N}_{2}\right)=0.2(0) \mathrm{mol}$

$$
\left(K_{\mathrm{c}}=\right) \frac{0.20^{2} \times 0.20}{0.26^{2} \times 0.25^{2}}=1.893491124\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)
$$

1.293 marks 0.45 and 0.46 swapped over
$n(\mathrm{CO})=0.45-0.21=0.24 \mathrm{~mol} \checkmark$
$n\left(\mathrm{CO}_{2}\right)=0.21 \mathrm{~mol} \checkmark$
$n\left(\mathrm{~N}_{2}\right)=0.105 \mathrm{~mol} \checkmark$
$\left(K_{\mathrm{c}}=\right) \frac{0.21^{2} \times 0.105}{0.24^{2} \times 0.25^{2}}=1.28625\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \downarrow$
1.0243 marks 0.45 used twice
$n(C O)=0.45-0.20=0.25 \mathrm{~mol} \checkmark$
$n\left(\mathrm{CO}_{2}\right)=0.2(0) \mathrm{mol} \checkmark$
$n\left(\mathrm{~N}_{2}\right)=0.1(0) \mathrm{mol} \downarrow$
$\left(K_{\mathrm{c}}=\right) \frac{0.20^{2} \times 0.10}{0.25^{2} \times 0.25^{2}}=1.024\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right) \downarrow$
1.1853 marks 0.46 used twice
$n(\mathrm{CO})=0.46-0.21=0.25 \mathrm{~mol} \checkmark$
$n\left(\mathrm{CO}_{2}\right)=0.21 \mathrm{~mol} \checkmark$
$n\left(\mathrm{~N}_{2}\right)=0.105 \mathrm{~mol} \checkmark$
$\left(K_{\mathrm{c}}=\right) \frac{0.21^{2} \times 0.105}{0.25^{2} \times 0.25^{2}}=1.185408\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)^{\vee}$

Question		Answer	Marks	Guidance
(a)	(iv)	Mark ECF from (iii) IF K_{c} from (iii) < 1 equilibrium to left/towards reactants OR IF K_{c} from (iii) > 1 equilibrium to right/towards products	1	First look at K_{c} value for (iii) at bottom of cut ALLOW favours reverse reaction For correct K_{c} value in (iii) of 0.95, ALSO ALLOW equilibrium position near to centre \checkmark
(b)	(i)	K_{c} has decreased AND ΔH is negative OR (forward) reaction is exothermic	1	Statement AND reason required for mark ALLOW for reason: reverse reaction is endothermic
	(ii)	Effect of T and P on equilibrium (increased) temperature shifts equilibrium to left AND (increased) pressure shifts equilibrium to right AND fewer (gaseous) moles on right-hand side \checkmark Overall effect on equilibrium Difficult to predict relative contributions of two opposing factors \checkmark	2	Reason ONLY required for pressure Temperature and ΔH had been required in (i) ALLOW ratio of (gas) moles is $4: 3$ ALLOW opposing effects may not be the same size ALLOW effects could cancel each other out ALLOW effects oppose one another DO NOT ALLOW just 'it is difficult to predict equilibrium position' (in question) For the 2nd mark, we are assessing the idea that we don't know which factor is dominant
		Total	10	

Question		Answer	Marks	Guidance
4	(a)	$\begin{aligned} & \mathrm{MnO}_{2}+4 \mathrm{OH}^{-} \longrightarrow \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \checkmark \\ & 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{ClO}_{3}^{-}+6 \mathrm{e}^{-} \checkmark \longrightarrow 6 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \end{aligned}$	2	ALLOW 'e': i.e. - sign not required
	(b)			ANNOTATIONS MUST BE USED
		Role of CO_{2} CO_{2} reacts with $\mathrm{H}_{2} \mathrm{O}$ forming an acid OR carbonic acid $/ \mathrm{H}_{2} \mathrm{CO}_{3}$ forms OR CO 2 is acidic \checkmark		ALLOW equation: $\begin{aligned} & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \\ & \text { OR CO } \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \\ & \text {OR } \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \end{aligned}$
		Equation involving OH^{-} $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{3}^{-}$ OR $\mathrm{H}_{2} \mathrm{CO}_{3}+2 \mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}^{2-}$ OR $\mathrm{CO}_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}^{+}$ OR $\mathrm{CO}_{2}+\mathrm{OH}^{-} \longrightarrow \mathrm{HCO}_{3}^{-}$ OR $\mathrm{CO}_{2}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \checkmark$ Effect on equilibrium with reason equilibrium shifts to right AND to restore $\mathrm{OH}^{-} \checkmark$	3	ALLOW for 'restores OH^{-1} the following: 'makes more OH^{-}, ' OH^{-}has been used up' DO NOT ALLOW just 'equilibrium shifts to right'

Question			er	Mark	Guidance
5	(a)		Temperature: (Forward) reaction is exothermic OR gives out heat OR reverse reaction is endothermic OR takes in heat \checkmark Pressure: Right-hand side has fewer number of (gaseous) moles \checkmark ORA Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right \checkmark	3	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW K_{c} increases at lower temperatures 3rd mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards NO_{2} OR towards products OR in forward direction OR increases yield of NO_{2} /products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' IGNORE responses in terms of rate
	(b)		$\begin{aligned} & 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}^{2}+6 \mathrm{H}_{2} \mathrm{O} \checkmark \\ & 2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2} \checkmark \end{aligned}$	2	ALLOW multiples, e.g. $2 \mathrm{NH}_{3}+2 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ ALLOW $\rightleftharpoons \mathbf{O R} \rightarrow$ in equations
	(c)	(i)	$\left(K_{\mathrm{c}}=\right) \frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{NO}^{2}\left[\mathrm{O}_{2}\right]\right.} \checkmark$	1	Square brackets are essential

Question		er	Mark	Guidance
(c)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=45 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$, award 5 marks IF answer = 45 with incorrect units, award 4 marks Equilibrium moles $0.60 \mathrm{~mol} \mathrm{NO}_{2} \checkmark$ 0.20 mol NO AND $0.40 \mathrm{~mol} \mathrm{O}_{2} \checkmark$ Equilibrium concentrations (equilibrium moles $\div \mathbf{2}$) $\left[\mathrm{NO}_{2}\right]=0.30 \mathrm{~mol} \mathrm{dm}^{-3}$ AND [NO] $=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{O}_{2}\right]=0.20 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ Calculation of K_{c} and units $K_{\mathrm{c}}=\frac{0.30^{2}}{0.10^{2} \times 0.20}=45 \checkmark \mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout Alternative route if concs NO and $\mathrm{O}_{\mathbf{2}}$ calculated at start: initial concentrations: $0.40 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NO}$ AND $0.35 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{O}_{2} \checkmark$ Equilibrium concentrations: $\left[\mathrm{NO}_{2}\right]=0.30 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ $[\mathrm{NO}]=0.10 \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{O}_{2}\right]=0.20 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ For units, ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ ALLOW ECF using any incorrect values for concentrations OR moles of $\mathrm{NO}, \mathrm{O}_{2}$ AND NO_{2} For ECF, ALLOW 2 significant figures up to calculator value correctly rounded ALLOW ECF from incorrect K_{c} expression for both calculation and units Common ECFs worth less than 5 marks: 22.5 not $\div 2$ 3 marks + unit mark 1.610 .6 for NO_{2} but 0.8 for NO and 0.7 for O_{2} No mark for moles NO and O_{2} 3 marks + unit mark 0.804 As above but also no $\div 2$ No mark for moles NO and O_{2} AND $\div 2 \quad 2$ marks + unit mark
		Total	11	

	,		Expected answers	Marks	Additional guidance
6	a		FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value $=7.81 \times 10^{-2}$ OR 0.0781 AND $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.2\left(00 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ AND $\left[\mathrm{NO}_{2}\right]=1.6(0)$, award 4 calculation marks and check for the mark for correct units Equilibrium amount of $\mathrm{N}_{2} \mathrm{O}_{4}$ $0.400 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \checkmark$ Equilibrium concentrations $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.200 \mathrm{~mol} \mathrm{dm}^{-3}$ AND $\left[\mathrm{NO}_{2}\right]=1.60 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark$ K_{c} expression $K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$ (Square brackets essential) OR $\frac{0.200}{1.60^{2}} \checkmark$ Calculation $=7.81 \times 10^{-2} \checkmark$ Units $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \checkmark$	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ANNOTATIONS MUST BE USED ALLOW ECF for equilibrium amounts $\div 2$ ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations For units, ALLOW $\mathrm{mol}^{-1} \mathrm{dm}^{3}$ ALLOW ECF from incorrect K_{c} expression
			Common errors for 4 calculation marks - Remember there is another mark for unit 7.81×10^{-2} from wrong concs $\quad \checkmark \checkmark+$ units look for $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0.8$ AND $\left[\mathrm{NO}_{2}\right]=3.2$ 0.03906 $\checkmark \checkmark \checkmark+$ units no conversion of both moles to concentration 0.01953 $\checkmark \checkmark \checkmark+$ units no conversion of NO_{2} moles to concentration 0.3125 $\checkmark \checkmark \checkmark+$ units moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ taken as $3.2 / 2$ 12.8 $\checkmark \checkmark \checkmark+$ units: mol dm ${ }^{-3} \mathrm{~K}_{c}$ expression upside down 0.125 $\checkmark \checkmark \checkmark+$ units; none $\left[\mathrm{NO}_{2}\right]$ instead of $\left[\mathrm{NO}_{2}\right]^{2}$ 'No units' MUST be stated 0.15625 MARK BY ECF as there are many different routes to this answer		

Question		Expected answers	Marks	Additional guidance
b	b	Each marking point is independent Effect on K_{c} K_{c} does not change (with pressure) \checkmark Comparison of conc terms after increase in pressure $\left[\mathrm{NO}_{2}\right]^{2}$ increases more than $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ OR concentration (term) on bottom (of K_{c}) increases more that concentration (term) on top (of K_{c})) Changes in concentrations linked to K_{c} (amount/concentration of) $\mathrm{N}_{2} \mathrm{O}_{4}$ increases AND (amount/concentration of) NO_{2} decreases AND to maintain/restore $\boldsymbol{K}_{\mathrm{c}} \checkmark$	3	ALLOW K_{c} only changes with temperature IGNORE K_{c} changes with temperature ALLOW $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}<K_{\mathrm{c}}$ OR $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$ decreases IGNORE K_{c} decreases ALLOW top of K_{c} expression increases and bottom decreases until K_{c} is reached ALLOW equilibrium shifts to right to maintain/restore K_{c} IGNORE just 'restores equilibrium' $\boldsymbol{K}_{\mathrm{c}}$ IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
		Total	8	

