	Question		Answer		Guidance
1	(a)		$(K_c =) \frac{[C_2H_2][H_2]^3}{[CH_4]^2} \checkmark$	1	Square brackets are essential State symbols not required. IGNORE incorrect state symbols
	(b)	(i)	amount of $H_2 = 3 \times 0.168$ = 0.504 (mol) \checkmark	1	

(b)	(ii)	(ii) FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.153 mol ² dm ⁻⁶ , award 3 marks IF answer = 0.153 with incorrect units, award 2 marks		FULL ANNOTATIONS MUST BE USED
				IF there is an alternative answer, check to see if there is any
		IF answer from 3(b)(i) for $n(H_2) \neq 0.504$, mark by ECF. Equilibrium concentrations (from $n(H_2) = 0.504$ mol dm ⁻³)		ECF credit possible using working below
		$[CH_4] = 2.34 \times 10^{-2} \text{ (mol dm}^{-3}\text{)}$		ALLOW ÷ by 4 of equilibrium amounts in all expressions, i.e
		, ,		ALLOW [CH ₄] = $\frac{9.36 \times 10^{-2}}{4}$ mol dm ⁻³
		AND $[C_2H_2] = 4.20 \times 10^{-2} \text{ (mol dm}^{-3})$		AND $[C_2H_2] = \frac{0.168}{4} \text{ mol dm}^{-3}$
		AND $[H_2] = 0.126 \text{ (mol dm}^{-3}) \checkmark$		AND $[H_2] = \frac{0.504}{4} \text{ mol dm}^{-3} \checkmark$
		Calculation of K_c and units		ALLOW ECF from incorrect concentrations or from moles From moles: 9.36×10^{-2} , 0.168 and 0.504, $K_c = 2.45$ by EC
		$K_c = \frac{4.20 \times 10^{-2} \times (0.126)^3}{(2.34 \times 10^{-2})^2} = 0.153 \checkmark \text{mol}^2 \text{dm}^{-6} \checkmark$ 3 significant figures are required	3	ALLOW dm ⁻⁶ mol ² DO NOT ALLOW mol ² /dm ⁶
		3 Significant rigures are required		ALLOW ECF from incorrect K_c expression for both calculati and units
				COMMON ECF From 3(b)(i) answer of 0.1404, $K_c = 3.32 \times 10^{-3}$ 2 marks + units $K_c = 0.0531$ No ÷ 4 throughout 1 mark + unit
(b)	(iii)	Initial amount of CH ₄ amount of CH ₄ = $9.36 \times 10^{-2} + 2 \times 0.168$ = 0.4296 OR $0.43(0)$ (mol) \checkmark	1	NO ECF possible (all data given in question)

(c)							
	Change	K _c	Equilibrium amount of C ₂ H ₂ / mol	Initial rate			Mark by COLUMN
	temperature increased	greater	greater	greater			
	smaller container	same	smaller	greater			ALLOW obvious alternatives for greater/smaller/same, e.g.
	catalyst added	same	same	greater		•	increases/decreases; more/less
		✓	✓	✓		3	
(d)	ONE mark only USE ONE TICK ONLY from TWO uses: 1. fuel cells 2. manufacture of margarine OR hydrogenation of alkenes/unsaturated fats/unsaturated oils/unsaturated molecules 3. making of ammonia OR Haber process 4. making of HCI/hydrochloric acid 5. making of methanol					1	IGNORE just 'fuel' IGNORE hydrogenation of margarine ALLOW hydrogenation of fats/oils DO NOT ALLOW explosives OR fertilisers
				T	otal	10	

C	uestion	er	Marks	Guidance
2	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 16.8 with 'no units', award 5 marks	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
				ANNOTATE WITH TICKS AND CROSSES, etc ALLOW ECF throughout
		At equilibrium, $n(I_2)$ OR $[I_2(g)]$ $= 4.00 \times 10^{-3} - 1.70 \times 10^{-3} = 2.30 \times 10^{-3} \text{ (mol / mol dm}^{-3}) \checkmark$ n(HI) OR $[HI(g)]= 2 \times 1.70 \times 10^{-3} = 3.40 \times 10^{-3} \text{ (mol / mol dm}^{-3}) \checkmark$		For all parts, ALLOW numerical answers from 3 significant figures up to the calculator value ALLOW omission of trailing zeroes, i.e. 3.40 as 3.4 but final numerical answer for K_c must be to 3 SF
		$(K_c =) \frac{(3.40 \times 10^{-3})^2}{3.00 \times 10^{-4} \times 2.30 \times 10^{-3}} \checkmark IGNORE K_c = \frac{[HI]^2}{[H_2][I_2]}$		ALLOW ECF using incorrect values for $[I_2]$ AND [HI] BUT $[H_2]$ in K_c expression must be 3.00 x 10^{-4} (given in Q)
		= 16.8 (3 SF required) ✓		ALLOW ECF from incorrect K_c expression for calculation to 3 SF and units
		no units ✓		For 'no units' ALLOW 'none' (ORA) OR '—' DO NOT ALLOW space to be left blank
				Common errors: Use of 1.70 x 10^{-3} for $n(HI)$ (no factor of x 2) $K_c = 4.19$ (3SF) and no units: 4 marks Use of K_c expression used is upside down
				$K_c = 0.0597$ (3SF) and no units: 4 marks No square for [HI] ²
				$K_c = 4930$ and dm ³ mol ⁻¹ 4 marks Note: different ECF units

uestion					er		Marks	Guidance
(b) (i))						2	DO NOT ALLOW more than one box ticked in a column
			H ₂ (g)	I ₂ (g)	I(g)			(response is a CON)
		greater	✓		✓			
		smaller		✓				
		the same						
		Each column should have only one box ticked Correct ticks for $H_2(g)$ AND $I_2(g)$ AND $HI(g)$ two marks $\checkmark\checkmark$ <i>i.e. all three columns correct</i> Ticks for two of $H_2(g)$, $I_2(g)$ and $HI(g)$ correct one mark \checkmark <i>i.e. two columns correct</i>						
(ii		<i>K</i> _c is smaller AND (forward) rea		xotherm	ic OR 🛆	d is negative ✓	1	Link to ΔH /exothermic essential ALLOW reverse reaction is endothermic DO NOT ALLOW equilibrium shifts to the right (CON)
(iii		K _c is the sam AND K _c is temperate pressure ✓		endent O	R <i>K</i> _c is r	ot changed by	1	ALLOW K_c is only changed by temperature IGNORE same number of moles on both side
						Total	9	

C	Question		Answer	Marks	Guidance
3	(a)	(i)	$(K_c =) \frac{[CO_2]^2 [N_2]}{[CO]^2 [NO]^2} \checkmark$	1	Square brackets required for ALL four concentrations
		(ii)	dm³ mol ⁻¹ ✓	1	ALLOW mol ⁻¹ dm ³

Question	Answer	Marks	Guidance		
(a) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 0.95 award 4 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, apply ECF by checking working for intermediate marks		
		4	IF there is an alternative answer, apply ECF by checking		
			$n(CO) = 0.46 - 0.21 = 0.25 \text{ mol } \checkmark$ $n(CO_2) = 0.21 \text{ mol } \checkmark$ $n(N_2) = 0.105 \text{ mol } \checkmark$ $(K_c =) \frac{0.21^2 \times 0.105}{0.25^2 \times 0.25^2} = 1.185408 \text{ (dm}^3 \text{ mol}^{-1}) \checkmark$		

Question	Answer	Marks	Guidance
(a) (iv)	Mark ECF from (iii)		First look at K_c value for (iii) at bottom of cut
	IF K_c from (iii) < 1 equilibrium to left/towards reactants OR IF K_c from (iii) > 1 equilibrium to right/towards products \checkmark	1	ALLOW favours reverse reaction For correct K _c value in (iii) of 0.95, ALSO ALLOW equilibrium position near to centre ✓
(b) (i)	K_c has decreased AND ΔH is negative OR (forward) reaction is exothermic \checkmark	1	Statement AND reason required for mark ALLOW for reason: reverse reaction is endothermic
(ii)	Effect of <i>T</i> and <i>P</i> on equilibrium (increased) temperature shifts equilibrium to left AND (increased) pressure shifts equilibrium to right AND fewer (gaseous) moles on right-hand side ✓ Overall effect on equilibrium Difficult to predict relative contributions of two opposing factors ✓	2	Reason ONLY required for pressure Temperature and ΔH had been required in (i) ALLOW ratio of (gas) moles is 4:3 ALLOW opposing effects may not be the same size ALLOW effects could cancel each other out ALLOW effects oppose one another DO NOT ALLOW just 'it is difficult to predict equilibrium position' (in question) For the 2nd mark, we are assessing the idea that we don't know which factor is dominant

(Question	Answer	Marks	Guidance	
4	(a)	$MnO_2 + 4OH^- \longrightarrow MnO_4^{2-} + 2H_2O + 2e^- \checkmark$	marks	ALLOW 'e': i.e. – sign not required	
		$3H_2O + CIO_3^- + 6e^- \checkmark \longrightarrow 6OH^- + CI^-$	2		
	(b)	Role of CO₂ CO₂ reacts with H₂O forming an acid OR carbonic acid/H₂CO₃ forms OR CO₂ is acidic ✓		ANNOTATIONS MUST BE USED ALLOW equation: $CO_2 + H_2O \longrightarrow H_2CO_3$ $OR CO_2 + H_2O \longrightarrow H^+ + HCO_3^-$ $OR CO_2 + H_2O \longrightarrow 2H^+ + CO_3^{2-}$	
		Equation involving OH ⁻ $H_2CO_3 + OH^- \longrightarrow H_2O + HCO_3^-$ OR $H_2CO_3 + 2OH^- \longrightarrow 2H_2O + CO_3^{2-}$ OR $CO_2 + OH^- \longrightarrow CO_3^{2-} + H^+$ OR $CO_2 + OH^- \longrightarrow HCO_3^-$ OR $CO_2 + 2OH^- \longrightarrow CO_3^{2-} + H_2O$ OR $H^+ + OH^- \longrightarrow H_2O \checkmark$		$\mathbf{OR} \ CO_2 + \Pi_2 O \longrightarrow Z \Pi + CO_3$	
		Effect on equilibrium with reason equilibrium shifts to right AND to restore OH⁻ ✓	3	ALLOW for 'restores OH ⁻ ' the following: 'makes more OH ⁻ ', 'OH ⁻ has been used up' DO NOT ALLOW just 'equilibrium shifts to right'	

Question	Answer	Marks	Guidance
(c)	FOLLOW through stages to mark Moles in titration $n(\text{KMnO}_4) = 0.0200 \times \frac{26.2}{1000} = 5.24 \times 10^{-4} \text{ mol } \checkmark$		ANNOTATIONS MUST BE USED AT LEAST 3 SF for each step
	$n(SO_3^{2-}) = 1.31 \times 10^{-3} \text{ mol } \checkmark$ Scaling		ECF 2.5 x answer above
	$n(SO_3^{2-})$ in original 100 cm ³ = 4 x 1.31 x 10 ⁻³ = 5.24 x 10 ⁻³ mol \checkmark		ECF 4 x answer above
	Mass of Na ₂ SO ₃ in sample = $126.1 \times 5.24 \times 10^{-3} \text{ g} = 0.660764 \text{ g}$ ✓		ECF 126.1 x answer above ALLOW 0.661 g up to calculator value
	Percentage $\% \text{ Na}_2 \text{SO}_3 = \frac{0.660764}{0.720} \times 100 = 91.8\% \checkmark$	5	ECF $\frac{\text{calculated mass above}}{0.720} \times 100$ ALLOW 91.8% (1 DP) up to calculator value of 91.77277778 i.e. DO NOT ALLOW 92%
	ALLOW alternative approach based on theoretical content of Na ₂ SO ₃ for last 2 marks		COMMON ERRORS: 36.8(1)% 4 marks no 2.5 factor 22.9(4)% 4 marks no scaling by 4 9.18% 3 marks no 2.5 and no x 4
	Theoretical amount, in moles, of Na ₂ SO ₃ in sample $n(\text{Na}_2\text{SO}_3) = \frac{0.720}{126.1} = 5.71 \times 10^{-3} \text{ mol } \checkmark$ Percentage		Watch for random ECF %s for % from incorrect $M(Na_2SO_3)$, e.g. use of $M(SO_3^{2-}) = 80.1$ giving 58.3%
	$\% \text{ Na}_2 \text{SO}_3 = \frac{5.24 \times 10^{-3}}{5.71 \times 10^{-3}} \times 100 = 91.8\% \checkmark$ Total	10	

C	luest	ion	er	Mark	Guidance
5	(a)		Temperature: (Forward) reaction is exothermic OR gives out heat OR reverse reaction is endothermic OR takes in heat ✓ Pressure: Right-hand side has fewer number of (gaseous) moles ✓ ORA Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc ALLOW K _c increases at lower temperatures 3rd mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards NO ₂ OR towards products OR in forward direction OR increases yield of NO ₂ /products ALLOW 'favours the right', as alternative for 'shifts equilibrium to right' IGNORE responses in terms of rate
	(b)		$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O \checkmark$ $2NO_2 + H_2O \longrightarrow HNO_3 + HNO_2 \checkmark$	2	ALLOW multiples, e.g. $2NH_3 + 2\frac{1}{2}O_2 \longrightarrow 2NO + 3H_2O$ ALLOW \rightleftharpoons OR \rightarrow in equations
	(c)	(i)	$(K_c =) \frac{[NO_2]^2}{[NO]^2 [O_2]} \checkmark$	1	Square brackets are essential

Question	er	Mark	Guidance
(c) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $45 \text{ dm}^3 \text{ mol}^{-1}$, award 5 marks IF answer = $45 \text{ with incorrect units, award 4 marks}$	5	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	Total	11	

Question		n Expected answers	Marks	Additional guidance			
6	а	FIRST, CHECK THE ANSWER ON ANSWER LINE IF numerical value = 7.81×10^{-2} OR 0.0781 AND $[N_2O_4] = 0.2(00 \text{ mol dm}^{-3}$ AND $[NO_2] = 1.6(0)$, award 4 calculation marks and check for the mark for correct units		IF there is an alternative answer, check to see if there is any ECF credit possible using working below			
				ANNOTATIONS MUST BE USED			
		Equilibrium amount of N_2O_4 0.400 mol N_2O_4 \checkmark					
		Equilibrium concentrations $[N_2O_4] = 0.200 \text{ mol dm}^{-3} \text{ AND } [NO_2] = 1.60 \text{ mol dm}^{-3} \checkmark$		ALLOW ECF for equilibrium amounts ÷ 2			
		K_c expression $K_c = \frac{[N_2O_4]}{[NO_2]^2} \text{ (Square brackets essential)} \text{OR} \frac{0.200}{1.60^2} \checkmark$					
		Calculation = $7.81 \times 10^{-2} \checkmark$		ALLOW 3 SF up to calculator value of 0.078125 correctly rounded ALLOW ECF using calculated equilibrium concentrations			
		Units dm³ mol ⁻¹ ✓	5	For units, ALLOW mol ⁻¹ dm ³ ALLOW ECF from incorrect K_c expression			
	Common errors for 4 calculation marks - Remember there is another mark for unit						
		7.81 x 10^{-2} from wrong concs $\checkmark \checkmark + \text{units}$ look for $[N_2O_4] = 0.8$ AND $[NO_2] = 3.2$ no conversion of both moles to concentration					
	0.03906 $\checkmark \checkmark \checkmark + \text{units}$ no conversion of both moles to concentration on conversion of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles to concentration on the notation of NO ₂ moles of N ₂ O ₄ taken as 3.2/2						
		0.3125 $\checkmark \checkmark \checkmark + \text{units}$ 12.8 $\checkmark \checkmark \checkmark + \text{units} = \text{mol dm}^{-3} K_c \text{ expression}$	mules oi an unside	N ₂ O ₄ (akeri as 3.2/2 o down			
		0.125 $\checkmark \checkmark \checkmark + \text{units: more } [NO_2]$	of [NO ₂] ² 'No units' MUST be stated				
	0.15625 MARK BY ECF as there are many different routes to this answer						
L		0.13023 MAINED LOT as there are many unificient routes to this answer					

Question		on	Expected answers	Marks	Additional guidance
	b	<u></u>	Each marking point is independent Effect on K_c K_c does not change (with pressure) \checkmark		ALLOW K_c only changes with temperature IGNORE K_c changes with temperature
			Comparison of conc terms after increase in pressure $[NO_2]^2$ increases more than $[N_2O_4]$ OR concentration (term) on bottom (of K_c) increases more that concentration (term) on top (of K_c) \checkmark		ALLOW $\frac{[N_2O_4]}{[NO_2]^2} < K_c$ OR $\frac{[N_2O_4]}{[NO_2]^2}$ decreases IGNORE K_c decreases
			Changes in concentrations linked to K _c (amount /concentration of) N ₂ O ₄ increases AND (amount /concentration of) NO ₂ decreases AND to maintain/restore K _c ✓	3	ALLOW top of K_c expression increases and bottom decreases until K_c is reached ALLOW equilibrium shifts to right to maintain/restore K_c IGNORE just 'restores equilibrium' K_c IS REQUIRED IGNORE just 'equilibrium shifts to right IGNORE le Chatelier response: 'equilibrium shifts to right' because there are fewer moles of gas on right-hand side
			Total	8	