1.	(i)	$2Mg + O_2$	$\rightarrow 2MgO \checkmark$		
			ALLOW multiples. Correct species must be seen		
			IGNORE state symbols	1	
	(ii)	Fizzes OF	R bubbles OR gas produced OR effervescing \checkmark		
			DO NOT ALLOW 'carbon dioxide gas produced' DO NOT ALLOW 'hydrogen produced' without 'gas'		
		Mg dissol	ves OR Mg disappears OR a solution is formed \checkmark		
			ALLOW 'it for Mg' IGNORE Mg reacts		
			IGNORE temperature change		
			IGNORE steam produced	2	
				2	
	(iii)	Quicker C	PR more vigorous OR gets hotter		
			MUST be a comparison of a reaction observation, not just 'more reactive'		
			ALLOW any comparison of greater rate including more		
			bubbles etc. DO NOT ALLOW more gas produced		
				1	[4]
2.	(a)	BaO ✓			[-]
		Ba ₃ N ₂ ✓	Treat any shown charges as working and ignore.		
			Treat B for Ba as a slip		
				2	
	(b)	(i) $\frac{0.11}{107}$			
	(0)	(1) 137.3			
			mark is for the working out which MUST lead to the correct answer of 8×10^{-4} up to calculator value		
				1	
		(ii) 19.2			
		OR	lated answer to $(\mathbf{h})(\mathbf{i}) \times 24000$		
		calcu	lated answer to (b)(i) \times 24000 \checkmark ALLOW 19 up to calculator value.		
			-	1	

(iii) 8.0×10^{-3} OR calculated answer to (b)(i) $\times 10$ \checkmark *ALLOW* 8.01 $\times 10^{-3}$ up to calculator value

(iv) any pH > 7 but <15
$$\checkmark$$

ALLOW a correct range of pH

- (c) Less barium to react OR some barium has already reacted ✓
 ALLOW less volume because contains some BaO or Ba₃N₂
- (d) reactivity increases (down the group) \checkmark

atomic radii increase **OR** there are more shells ✓

there is more shielding OR more screening \checkmark

the nuclear attraction decreases **OR** Increased shielding and distance outweigh the increased nuclear charge \checkmark

easier to remove (outer) electrons OR
ionisation energy decreases ✓
USE annotations with ticks, crosses, ecf, etc for this part.
DO NOT ALLOW more orbitals OR more sub-shells
'More' is essential
ALLOW 'more electron repulsion from inner shells'
ALLOW 'nuclear pull'
IGNORE any reference to 'effective nuclear charge'
ALLOW easier to form positive ion

5

1

1

1

[12]

		CaO and CO ₂ DO NOT ALLOW the 'equation mark' if O ₂ is seen on both sides (but note that the 'state symbol mark' may still be accessible)		[2]
4.	(i)	Ca(OH) ₂ ✓ IGNORE charges, even if wrong	1	
	(ii)	Ca(NO ₃) ₂ ✓ IGNORE charges, even if wrong	1	[2]
5.	(i) (ii)	because Ca has changed from 0 to +2 (1) and H has changed from +1 to 0 (1) Calcium reacts with water producing hydrogen/H ₂ /calcium/hydroxide/Ca(OH) ₂ (1) (i.e. one product) Ca(s) + H ₂ O(1) \rightarrow Ca(OH) ₂ (aq) + H ₂ (g) (1) (i.e. full equation) Equation would subsume both two marks	2	[4]
6.	(i) (ii)	loss (of electrons) \checkmark Ba \checkmark $0 \rightarrow (+)2 \checkmark (accept 2+)$	1 2	[4]

state symbols are *dependent* on correct formulae of CaCO₃,

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

equation ✓ state symbols ✓

3.

		6		
	(ii)			
		Mg J ²⁺		
		or with Mg full shell. correct dot and cross√; correct charges√	2	
				[4]
8.	(i)	MgO has reacted w	with $CO_2 \checkmark 1$	
	(ii)	Solid dissolves / disappears ✓ Fizzing / bubbles ✓	2	
		$MgO + 2HCl \rightarrow MgCl_{2} + H_{2}O\checkmark$ $MgCO_{3} + 2HCl \rightarrow MgCl_{2} + CO_{2} + H_{2}O\checkmark$		
		both reactions form magnesium chloride/MgC l_2 ✓	3	[6]
				[-]
9.	(i)	hydrogen / H ₂ \checkmark	1	
	(ii)	$Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2 \checkmark$	1	
	(iii)	different numbers of moles/atoms/ different A_r values \checkmark so different number of moles of H_2 /more moles of $Ca\checkmark$		
		(i.e. an attempt to quantify difference)	2	
	(iv)	8-14 🗸	1	

2

[5]

(i) Oxidation state goes from 0 in O₂ \checkmark \rightarrow -2 in MgO \checkmark

7.

10.	(i) (ii)	$Ca^+(g) \rightarrow Ca^{2+}(g) + e^-$ Equation with correct charges and 1 electron lost \checkmark state symbols \checkmark '-' not required on 'e' same number of protons or same nuclear charge attracting less electrons/ electron removed from an ion/ less electron-electron repulsion (not less shielding)/	2	
	(iii)	ion is smaller \checkmark atomic radii of Sr > atomic radii of Ca/ Sr has electrons in shell further from nucleus than Ca/ Sr has electrons in a higher energy level/ Sr has more shells \checkmark Therefore less attraction \checkmark Sr has more shielding than Ca \checkmark ('more' is essential)	1	
		increased nuclear charge is outweighed / despite increased nuclear chargeby at least one of the factors above \checkmark		[6]
11.		$O_3 \rightarrow CaO + CO_2 \checkmark$ symbols not required		[1]
12.	(a)	Ca(s) +2 \checkmark HCl(aq)CaCl ₂ (aq) + .H ₂ (g). \checkmark (g) not required for H ₂	2	
	(b)	In Ca, oxidation state = $0 \checkmark$ and In CaCl ₂ , oxidation state = $+2 \checkmark$ Oxidation number increases from Ca to CaCl ₂	2	[4]

13.	(i)	moles $\text{HC}l = 2.0 \times 50/1000 = 0.10$	1	
	(ii)	moles $Ca = \frac{1}{2} \times \text{moles HC}l = 0.050 \checkmark$ mass $Ca = 40.1 \times 0.050 = 2.00 \text{ g} / 2.005 \text{ g} \checkmark$ (accept $40 \times 0.050 = 2.0 \text{ g}$) (mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)	2	
	(iii)	Ca has reacted with water \checkmark Ca + 2H ₂ O \rightarrow Ca(OH) ₂ + H ₂ $\checkmark \checkmark$ <i>state symbols not required</i>		
		1st mark for H_2 2nd mark is for the rest of the balanced equation	3	[6]
14.	(a)	$\operatorname{RaC}l_2$ 🗸	1	
	(b)	Reduction is gain of electrons/decrease in oxidation number		
		✓ Ra ²⁺ gains 2 electrons → Ra/ Oxidation state goes from +2 in RaC l_2 → 0 in Ra ✓	2	[3]
15.	(i)	effervescence/bubbles ✓ Ra disappears/dissolves ✓	2	
	(ii)	8-14 🗸	1	[3]
16.	(or C	O ₃ reacts with (or neutralises) HCl ✓ CaCO ₃ + HCl in an equation) O ₃ + 2HCl → CaCl ₂ + H ₂ O + CO ₂ ✓		
		rect equation would score both marks)		[2]

17. Strontium reacts with oxygen/strontium oxide forms/SrO forms ✓
28r + O → 28rO /

$$2Sr + O_2 \rightarrow 2SrO /$$
$$Sr + \frac{1}{2}O_2 \rightarrow SrO \checkmark$$

[2]

[5]

2

18.	(i)	In Sr, oxidation number = 0 \checkmark
		In Sr(OH) ₂ , oxidation number = (+)2 \checkmark
		OR
		Oxidation number increases from $Sr \rightarrow Sr(OH)_2 \checkmark$ by 2 \checkmark

- (ii) $0.438/87.6 = 5.00 \times 10^{-3} / 0.00500 \text{ mol } \checkmark$ 1(iii) $0.00500 \times 24.0 = 0.120 \text{ dm}^3 \checkmark (\text{accept } 120 \text{ cm}^3)$ 1
- (iv) $0.00500 \times 1000/200 = 0.0250 \text{ mol dm}^{-3} \checkmark$ 1

19.	(i)	heat 🗸	1	
	(ii)	$\dots 3SrO(s) + \dots 2Al(s) \rightarrow \dots 3Sr(s) + \dots Al_2O_3(s) \checkmark$	1	
	(iii)	Molar mass of $SrCO_3 = 87.6 + 12 + 16x3 = 147.6 \text{ g mol}^{-1}$ \checkmark		
		Mass SrCO ₃ required = $100 \times 147.6/87.6 = 168$ tonnes \checkmark		
		Mass of ore needed = mass $SrCO_3 \times 100/2$ = $168 \times 100/2 = 8400$ tonnes / 8425 tonnes (from 168.484931507) \checkmark (answer depends on rounding) 5000 tonnes is 50 × 100 tonnes: worth 1 mark	3	
	(iv)	98% waste produced which must be disposing of /made into something worthwhile/CO ₂ being removed by something sensible/ any sensible comment ✓	1	[6]
20.	(i) (ii)	Answer is inclusive of 9 – 14 inclusive \checkmark Ca(s): $1s^22s^22p^63s^23p^64s^2 \checkmark$	1	
		Ca(OH) ₂ (aq): $1s^22s^22p^63s^23p^6 \checkmark$	2	[3]

21. barium atoms are larger \checkmark

barium atoms have more shielding \checkmark

this outweighs the increase in nuclear charge \checkmark

barium electrons are lost more easily /less energy required /ionisation energy decreases ✓

[4]