1. (i) $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO} \checkmark$

ALLOW multiples. Correct species must be seen IGNORE state symbols
(ii) Fizzes OR bubbles OR gas produced OR effervescing

DO NOT ALLOW 'carbon dioxide gas produced'
DO NOT ALLOW 'hydrogen produced' without 'gas'
Mg dissolves OR Mg disappears OR a solution is formed \checkmark
ALLOW 'it for $M g$ '
IGNORE Mg reacts
IGNORE temperature change
IGNORE steam produced
(iii) Quicker OR more vigorous OR gets hotter

MUST be a comparison of a reaction observation, not just 'more reactive'
ALLOW any comparison of greater rate including more bubbles etc.
DO NOT ALLOW more gas produced
2.
(a) $\mathrm{BaO} \checkmark$
$\mathrm{Ba}_{3} \mathrm{~N}_{2} \checkmark$
Treat any shown charges as working and ignore.
Treat B for Ba as a slip
(b) (i) $\frac{0.11}{137.3} \downarrow$
mark is for the working out which MUST lead to the correct answer of 8×10^{-4} up to calculator value
(ii) 19.2

OR
calculated answer to $(\mathbf{b})(\mathbf{i}) \times 24000$
ALLOW 19 up to calculator value.
(iii) 8.0×10^{-3}

OR

calculated answer to $\mathbf{(b) (i)} \times 10$
ALLOW 8.01×10^{-3} up to calculator value
(iv) any $\mathrm{pH}>7$ but <15

ALLOW a correct range of pH .
(c) Less barium to react OR
some barium has already reacted \checkmark
ALLOW less volume because contains some BaO or $\mathrm{Ba}_{3} \mathrm{~N}_{2}$
(d) reactivity increases (down the group) atomic radii increase OR
there are more shells
there is more shielding OR more screening
the nuclear attraction decreases OR
Increased shielding and distance outweigh the
increased nuclear charge
easier to remove (outer) electrons OR
ionisation energy decreases
USE annotations with ticks, crosses, ecf, etc for
this part.
DO NOT ALLOW more orbitals OR more sub-shells
'More' is essential
ALLOW 'more electron repulsion from inner shells'
ALLOW 'nuclear pull'
IGNORE any reference to 'effective nuclear charge'
ALLOW easier to form positive ion
3. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ equation state symbols state symbols are dependent on correct formulae of CaCO_{3}, CaO and CO_{2}
DO NOT ALLOW the 'equation mark' if O_{2} is seen on both sides (but note that the 'state symbol mark' may still be accessible)
4. (i) $\mathrm{Ca}(\mathrm{OH})_{2} \checkmark$

IGNORE charges, even if wrong
(ii) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \checkmark$

IGNORE charges, even if wrong
5. (i) because Ca has changed from 0 to +2 (1) and H has changed from +1 to 0 (1)
(ii) Calcium reacts with water producing hydrogen $/ \mathrm{H}_{2} /$ calcium $/$ hydroxide $/ \mathrm{Ca}(\mathrm{OH})_{2}(\mathbf{1})$ (i.e. one product) $\mathrm{Ca}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})(1)$ (i.e. full equation) Equation would subsume both two marks
$\begin{array}{lll}\text { 6. (i) } & \text { loss (of electrons) } \checkmark & 1 \\ \text { (ii) } & \operatorname{Ba} \checkmark \\ & 0 \rightarrow(+) 2 \checkmark \text { (accept } 2+) & 2\end{array}$
7. (i) Oxidation state goes from 0 in O_{2}
$\rightarrow-2$ in $\mathrm{MgO} \checkmark$
(ii)

or with Mg full shell.
correct dot and cross \checkmark; correct charges $\checkmark \quad 2$
8. (i)

MgO has reacted with $\mathrm{CO}_{2} \checkmark 1$
(ii) Solid dissolves / disappears \checkmark

Fizzing / bubbles \checkmark
$\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$
$\mathrm{MgCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$
both reactions form magnesium chloride $/ \mathrm{MgCl}_{2} \checkmark$
9. (i) hydrogen $/ \mathrm{H}_{2} \checkmark$
(ii) $\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark \quad 1$
(iii) $\begin{aligned} & \text { different numbers of moles/atoms/ different } \mathrm{A}_{\mathrm{r}} \text { values } \checkmark \\ & \\ & \text { so different number of moles of } \mathrm{H}_{2} / \text { more moles of } \mathrm{Ca} \checkmark \\ & \\ & \text { (i.e. an attempt to quantify difference) }\end{aligned}$ 2
(iv) $8-14 \checkmark \quad 1$
10. (i) $\mathrm{Ca}^{+}(\mathrm{g}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{g})+\mathrm{e}^{-}$

Equation with correct charges and 1 electron lost \checkmark state symbols \checkmark
'-' not required on 'e' 2
(ii) same number of protons or same nuclear charge attracting less electrons/
electron removed from an ion/
less electron-electron repulsion (not less shielding)/
ion is smaller \checkmark
(iii) atomic radii of $\mathrm{Sr}>$ atomic radii of $\mathrm{Ca} /$

Sr has electrons in shell further from nucleus than $\mathrm{Ca} /$
Sr has electrons in a higher energy level/
Sr has more shells
Therefore less attraction
Sr has more shielding than Ca
('more' is essential)
increased nuclear charge is outweighed / despite increased nuclear chargeby at least one of the factors above
11. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
state symbols not required
12. (a) $\ldots . . \mathrm{Ca}(\mathrm{s})+\ldots . .2 \checkmark \mathrm{HCl}(\mathrm{aq}) \ldots \ldots . . \mathrm{CaCl}_{2}(\mathrm{aq})+. \mathrm{H}_{2}(\mathrm{~g})$.
(g) not required for H_{2}
(b) In Ca, oxidation state $=0 \checkmark$ and

In CaCl_{2}, oxidation state $=+2 \checkmark$
Oxidation number increases from Ca to CaCl_{2}
13. (i) moles $\mathrm{HCl}=2.0 \times 50 / 1000=0.10 \checkmark 1$
(ii) moles $\mathrm{Ca}=1 / 2 \times$ moles $\mathrm{HCl}=0.050 \checkmark$
mass $\mathrm{Ca}=40.1 \times 0.050=2.00 \mathrm{~g} / 2.005 \mathrm{~g}$
(accept $40 \times 0.050=2.0 \mathrm{~g}$)
(mass Ca of 4.0 g would score 1 mark as 'ecf' as molar ratio has not been identified)
(iii) Ca has reacted with water \checkmark
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \checkmark \checkmark$
state symbols not required
1st mark for $\mathrm{H}_{2} \quad 3$
2nd mark is for the rest of the balanced equation
14. (a) $\mathrm{RaCl}_{2} \checkmark$
(b) Reduction is gain of electrons/decrease in oxidation number
Ra^{2+} gains 2 electrons $\rightarrow \mathrm{Ra} /$
Oxidation state goes from +2 in $\mathrm{RaCl}_{2} \rightarrow 0$ in $\mathrm{Ra} \checkmark$
15. (i) effervescence/bubbles Ra disappears/dissolves 2
(ii) 8 -14 \checkmark 1
16. CaCO_{3} reacts with (or neutralises) HCl (or $\mathrm{CaCO}_{3}+\mathrm{HCl}$ in an equation)
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(correct equation would score both marks)
17. Strontium reacts with oxygen/strontium oxide forms $/ \mathrm{SrO}$
forms
$2 \mathrm{Sr}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SrO} /$
$\mathrm{Sr}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrO} \checkmark$
18. (i) In Sr , oxidation number $=0 \checkmark$

In $\mathrm{Sr}(\mathrm{OH})_{2}$, oxidation number $=(+) 2$
OR
Oxidation number increases from $\mathrm{Sr} \rightarrow \mathrm{Sr}(\mathrm{OH})_{2} \checkmark$ by $2 \checkmark \quad 2$
(ii) $0.438 / 87.6=5.00 \times 10^{-3} / 0.00500 \mathrm{~mol} \checkmark \quad 1$
(iii) $0.00500 \times 24.0=0.120 \mathrm{dm}^{3} \checkmark\left(\right.$ accept $\left.120 \mathrm{~cm}^{3}\right) \quad 1$
(iv) $0.00500 \times 1000 / 200=0.0250 \mathrm{~mol} \mathrm{dm}^{-3} \checkmark \quad 1$
19. (i) heat \checkmark 1
(ii) $\quad . .33 . . \mathrm{SrO}(\mathrm{s})+\ldots 2 . . \mathrm{Al}(\mathrm{s}) \rightarrow \ldots 3 . . \mathrm{Sr}(\mathrm{s})+\ldots . \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \checkmark \quad 1$
(iii) Molar mass of $\mathrm{SrCO}_{3}=87.6+12+16 \times 3=147.6 \mathrm{~g} \mathrm{~mol}^{-1}$

Mass SrCO_{3} required $=100 \times 147.6 / 87.6=168$ tonnes
Mass of ore needed $=$ mass $\mathrm{SrCO}_{3} \times 100 / 2$
$=168 \times 100 / 2=8400$ tonnes $/$
8425 tonnes (from 168.484931507)
(answer depends on rounding)
5000 tonnes is 50×100 tonnes: worth 1 mark
(iv) 98% waste produced which must be disposing of /made into something worthwhile/ CO_{2} being removed by something sensible/
any sensible comment
20. (i) Answer is inclusive of 9-14 inclusive
(ii) Ca (s): $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 4 \mathrm{~s}^{2}$
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}): \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} \checkmark$
21. barium atoms are larger
barium atoms have more shielding
this outweighs the increase in nuclear charge
barium electrons are lost more easily
/less energy required
/ionisation energy decreases \checkmark

