			Answer	Mark	Guidance
1	(a)		p-orbital	2	Note: A diagram is required for each mark DO NOT ALLOW C=C in one diagram but ALLOW ECF for subsequent use in another diagram. The bonds shown in the diagram are required
			First mark diagram on left with p-orbitals labelled OR unlabelled diagram AND the statement: (sideways) overlap of p orbitals ✓ Second mark (labelled) diagram on right showing π-bond ✓		ALLOW ECF for missing bonds in second diagram IGNORE any atoms joined to the bonds ALLOW a diagram where the p-orbitals are linked for second mark. e.g.
	(b)	(i)	(series of compounds with the) same functional group OR same/similar chemical properties OR same/similar chemical reactions ✓	2	IGNORE reference to physical properties IGNORE same general formula (in question)
			each successive/subsequent member differing by CH₂ ✓		Differs by CH ₂ is not sufficient (<i>no successive</i>) DO NOT ALLOW same empirical OR have the same molecular formula
		(ii)	C _n H _{2n−1} Br ✓	1	ALLOW C _n H _{2n-1} X ONLY if X is specified as Br (<i>question asks for bromide</i>)
		(iii)	3-bromoprop(-1-)ene ✓	1	ALLOW 1-bromoprop-2-ene
	(c)	(i)	Movement of an electron pair ✓	1	ALLOW movement of a lone pair OR movement of a bond
		(ii)	Electron pair donor ✓	1	ALLOW can donate a lone pair

	Answer	Mark	Guidance
(d) (i		3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) ALLOW S _N 1 mechanism: Dipole shown on C-Br bond, C ⁵⁺ and Br ⁵⁻ , AND curly arrow from C-Br bond to Br atom ✓ Correct carbocation AND curly arrow from HO ⁻ to carbocation Curly arrow must come from lone pair on O of HO ⁻ OR OH ⁻ OR from minus sign on HO ⁻ ion (No need to show lone pair if curly arrow came from negative charge on O) ✓ correct organic product AND Br ⁻ ✓ H ₂ C H ₂ C H H ₂ C H H H H H H H H H H H H H
(ii	Nucleophilic substitution ✓	1 1	

		Answer	Mark	Guidance
(f)	(i)	H₂ AND Ni (catalyst) ✓	1	ALLOW name or formula for each IGNORE any stated temperature and pressure
	(ii)	(Initiation) $Cl_2 \longrightarrow_{2C} l$ AND UV \checkmark (Propagation) $C_3H_7Br + Cl \longrightarrow_{C} {}_3H_6Br + HCl \checkmark$ $C_3H_6Br + Cl_2 \longrightarrow_{C} {}_3H_6BrCl_+ Cl \checkmark$ (Termination) Two from the three termination equations below \checkmark $2Cl \longrightarrow_{C} Cl_2$ $C_3H_6Br + Cl \longrightarrow_{C} {}_3H_6BrCl$ $2C_3H_6Br \longrightarrow_{C} {}_6H_{12}Br_2$ names of steps initiation, propagation and termination linked to one correct equation for each step in this mechanism \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW any ECF in this question IGNORE references to temperature THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above IGNORE dots IGNORE state symbols IGNORE one incorrect termination equation
	(iii)	further substitution OR produces different termination products OR More than one termination step✓ substitution at different positions along chain ✓	2	IGNORE mixture of organic products (in question) ALLOW dichloro/multichloro/dibromo/multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products ALLOW forms different structural isomers ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced
		Total	25	

Question	Answer	Mark	Guidance
2 (a)	It is an electron pair donor OR can donate a lone pair ✓	1	
(b)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE connectivity to C ₃ H ₇ throughout
	$ \begin{tabular}{l} \hline \cdot OCH_3 \\ \hline Dipole shown on the C-Br bond, C^{δ^+} and Br^{δ^-} and curly arrow from the C-Br bond to the Br atom \checkmark \\ \hline \end{tabular} $		IGNORE alkyl group in first marking point. Curly arrow must start from C–Br bond and not from C atom. Dipole must be partial charge and not full charge
	Curly arrow from $:\overline{O}CH_3$ to carbon atom in the C-Br bond \checkmark Correct organic product \checkmark S _N 1 mechanism C_3H_7 $H \longrightarrow C \xrightarrow{\delta+C}Br$ δ^-		CH ₃ O ⁻ curly arrow must come from one lone pair on O of CH ₃ O ⁻ ion OR from negative sign on O of the CH ₃ O ⁻ ion ALLOW arrow from lone pair on O in OCH ₃ ⁻ Lone pair not required DO NOT ALLOW CH ₃ O ^{δ-} DO NOT ALLOW incorrect connectivity of CH ₃ O group in the final product –CH ₃ O IGNORE Br ^{δ-} as a product
	H C_3H_7 H C_3H_7 $C_$		ALLOW S_N1 mechanism Dipole shown on the C–Br bond, $C^{\delta+}$ and $Br^{\delta-}$ and curly arrow from C–Br bond to the Br atom \checkmark curly arrow from CH ₃ O $^-$ to carbonium ion \checkmark correct organic product \checkmark

Question	Answer	Mark	Guidance
(c)	1-lodobutane increases the rate AND	1	
	C—I bonds are weaker (than C—Br) OR C—I bond has a lower bond enthalpy OR C—I bond needs a smaller amount of energy to break OR C—I bond is easier to break ✓		All statements must be comparative ALLOW ORA IGNORE C—I bond is longer IGNORE polarity and references to electronegativity
(d)		2	ALLOW only skeletal formula
	butyl ethanoate ✓		DO NOT ALLOW ECF from incorrect structure. ALLOW butylethanoate ALLOW butanyl for butyl DO NOT ALLOW butly
(e) (i)	(<u>136.9</u> × 100) = 47% 291.1√	1	ALLOW 47 up to calculator value correctly rounded. 47.0 or 47.03 or 47.029 will be correct common answers
(e) (ii)	NaBr OR LiBr ✓	1	IGNORE any working shown. ALLOW correct name or formula DO NOT ALLOW HBr (it is an acid)
(e) (iii)	Look at answer if 88.8% AWARD 3 marks if 88.75% AWARD 2 marks (not 3 sig. fig.) Moles of butan-1-ol = 0.08(00) ✓	3	Answer MUST be to 3 significant figures. ALLOW ECF but do not allow a yield >100%
	Moles of 1-bromobutane = 0.071(0) ✓ % yield = 88.8% ✓		ALLOW Mass of 1-bromobutane expected = 10.952 g
	Total	12	

C	uesti	on	Answer	Mark	Guidance
3	(a)		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Displayed formulae MUST be used to award each mark
			Correct polymer with side links ✓ Balanced equation for formation of correct polymer - correct use of <i>n</i> in the equation and brackets ✓		n on LHS can be at any height to the left of formula AND n on the RHS must be a subscript (essentially below the side link)
	(b)	(i)	$CH_2CHCl + 2O_2 \longrightarrow CO + CO_2 + HCl + H_2O \checkmark$	1	ALLOW any other correctly balanced equation with the same reactants and products ALLOW C ₂ H ₃ C <i>l</i> for CH ₂ CHC <i>l</i>
		(ii)	Sodium hydrogencarbonate neutralises HC <i>l</i> ✓	1	Assume that 'it' refers to sodium hydrogencarbonate but DO NOT ALLOW other chemicals e.g. sodium ALLOW NaHCO ₃ is a base ALLOW forms a salt or sodium chloride or NaCl ALLOW equation to show formation of NaCl from NaHCO ₃ and HCl even if not balanced. IGNORE reacts

Question	Answer	Mark	Guidance
(c)	abundance (in atmosphere) OR amount (in atmosphere) OR (atmospheric) concentration OR percentage (in air) ✓ OR ability to absorb infrared/IR (radiation)✓ OR	2	ALLOW absorption of infrared/IR
(d) (i)	residence time ✓ Any balanced equation between a metal oxide and carbon dioxide to form a carbonate e.g CaO + CO₂	1	ALLOW MO for metal oxide
(ii)	ANY ONE FROM deep in oceans OR in geological formations OR (deep) in rocks OR in mines OR in oil wells OR in gas fields ✓	1	Assume that 'it' refers to carbon dioxide but DO NOT ALLOW carbon DO NOT ALLOW reacted with oxides or stored as carbonates.
	Total	8	

Q	uesti	on	Answer	Marks	Guidance
4	(a)	(i)	correct curly arrow from double bond to iodine atom and curly arrow from the I−Br bond to the bromine atom ✓	3	Curly arrow must start from bond and go to correct atom DO NOT ALLOW partial charges on carbon–carbon double bond
			correct carbonium ion OR correct carbocation ✓		DO NOT ALLOW δ+ on carbon atom The positive charge must be associated with the carbon atom and not with a bond Make certain the carbonium ion includes the iodine atom
			correct curly arrow from bromide ion to the (positive) carbon \checkmark		Curly arrow must come from any lone pair or the negative sign of the bromide ion
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		The lone pair on the bromide ion does not need to be shown
		(ii)	Electrophilic addition ✓	1	
		(iii)	H CH ₃	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg CH ₂ BrCHICH ₃ IGNORE any name given

Question	Answer	Marks	Guidance
(b) (i)	Ultraviolet OR UV ✓	1	ALLOW high temperature OR 300 °C IGNORE light/radiation DO NOT ALLOW any catalyst
(ii)		7	Use the SEEN annotation on page 11 if blank or no credit can be given
	(free) radical substitution ✓		IGNORE any state symbols in equations Radicals do NOT need a single dot
	(Initiation step) IBr → Br + I ✓		IGNORE dots
	homolytic fission ✓		DO NOT ALLOW homolytical fission Heterolytic anywhere in the answer contradicts this mark
	(Propagation steps) Br + CH ₄ → HBr + CH ₃ ✓		IGNORE I + $CH_4 \rightarrow HI + CH_3$
	$CH_3 + IBr \rightarrow CH_3I + Br \checkmark$		IGNORE CH ₃ + IBr → CH ₃ Br + I DO NOT ALLOW equations with H OR any other incorrect equation (i.e. not one of the four propagation steps shown)
	(Termination steps) $I + CH_3 \rightarrow CH_3I$ $OR Br + Br \rightarrow Br_2$ $OR I + I \rightarrow I_2$ $OR Br + CH_3 \rightarrow CH_3Br$ $OR CH_3 + CH_3 \rightarrow C_2H_6$ $OR I + Br \rightarrow IBr \checkmark$		ALLOW any other suitable termination steps DO NOT ALLOW termination steps with H
	QWC propagation linked to correct equations Br + CH ₄ → HBr + CH ₃ CH ₃ + IBr → CH ₃ I + Br AND initiation linked to correct equation IBr → Br + I ✓		QWC can only be given if marking points 2, 4 and 5 have been awarded
	Total	13	

Q	uesti	on	Answer	Marks	Guidance
5	(a)		N ✓	1	ALLOW CF ₃ CFCl ₂
	(b)	(i)	S ✓	1	ALLOW CH ₃ CHBrCH ₂ CHICH ₃
	(6)	(ii)	curly arrow from HO $^-$ to carbon atom of C-Br bond \checkmark Dipole shown on C-Br bond, $C^{\delta+}$ and $Br^{\delta-}$, and curly arrow from C-Br bond to the halogen atom – arrow must be very close to the bond \checkmark correct products of the reaction – not ambiguous with the C_3H_7 \checkmark	4	The curly arrow must start from the oxygen atom of the OH ⁻ , and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge DO NOT ALLOW attack by KOH or K ⁺ OH ⁻ ALLOW S _N 1 Dipole shown on C−Br bond, C ^{δ+} and Br ^{δ-} , and curly arrow from C−Br bond to the halogen atom − arrow must be very close to the bond ✓ Correct carbocation drawn AND curly arrow from HO ⁻
			CH ₃ CH ₂ G _{H₂} — C — OH + Br		to the carbocation (the curly arrow must start from the oxygen atom of the OH ⁻ , and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge) ✓ Correct products of the reaction – not ambiguous with the C ₃ H ₇ ✓ nucleophilic substitution ✓
			nucleophilic substitution ✓		

Question	Answer	Marks	Guidance
(b) (iii)	C-I bond is weaker than C-Br bond OR C-I has a lower bond enthalpy than C-Br bond OR C-I bond is longer than C-Br bond	1	Answer must refer to the correct bond ALLOW ora
	AND C-I bond is easier to break than C-Br bond OR less energy is needed to break the C-I bond ✓		IGNORE references to electronegativity
(c)	HC/ + CH₃CHCHCH₃ → CH₃CH₂CHC/CH₃ Correct structural formula of product ✓ Equation with structural formulae ✓	2	Must use structural formulae for both organic compounds in the equation ALLOW CH ₃ CH=CHCH ₃ for but-2-ene ALLOW two marks for correct equation with structural formulae ALLOW one mark for correct equation with displayed formulae IGNORE any mechanisms
(d)	HCFCs OR hydrocarbons OR HFCs ✓	1	ALLOW alkanes DO NOT ALLOW specific alkanes
	Total	10	