| Ally | /I Droi | mide, CH_2 = $CHCH_2$ Br, is used in the production of polymers. | | |------|---------|---|-----| | (a) | Part | of the C=C double bond in allyl bromide is called a π -bond. | | | | Drav | w a labelled diagram to show the formation of the π -bond. | | | | | | | | | | | [2] | | (b) | - | bromide is a member of a homologous series. Compounds in this series have the sa
eral formula. | me | | | (i) | What is meant by the term <i>homologous series</i> ? | | | | | | | | | | | | | | | | | | | (ii) | What is the general formula of the homologous series that has allyl bromide as member? | | | | | | [1] | | | (iii) | Give the systematic name for allyl bromide. | | | | | | [1] | | (c) | | ction mechanisms use curly arrows and can involve electrophiles and nucleophiles. | | | | (i) | What does a <i>curly arrow</i> represent in mechanisms? | | | | | | | | | (ii) | What is meant by the term <i>nucleophile</i> ? | | | | | | | | | | | [1] | | | | | | | d) | Allyl | bromide, CH ₂ =CHCH ₂ Br, reacts with aqueous sodium hydroxide. | |-----|-------|---| | | (i) | Outline the mechanism of this reaction. | | | | Include curly arrows, relevant dipoles and final product(s). | [3] | | | (ii) | Name the type of mechanism. | | | | [1] | | (e) | Allyl | bromide, CH ₂ =CHCH ₂ Br, reacts with bromine, Br ₂ . | | | (i) | Outline the mechanism of this reaction. | | | | Include curly arrows, relevant dipoles and the structures of the intermediate and final product(s). | [4] | | | (ii) | Name the type of mechanism. | | | | [1] | | | | · · | | СН | | | |-------|--|-----| | (i) | State the reagents and conditions for step 1 . | | | (ii) | In step 2 , 1-bromopropane reacts with chlorine by radical substitution. | [1] | | | Outline the mechanism for the monochlorination of 1-bromopropane. In your mechanism, you can show the formula of 1-bromopropane as $\rm C_3H_7Br.$ | | | | Include the names of the three stages in this mechanism, state the essential condition and all termination steps. | วทร | [5] | | (iii) | Radical substitution produces a mixture of organic products. | | | | Suggest two reasons why. | | | | | | | | | | | | | | | | | [2] | (f) Allyl bromide is reacted as shown below. [Total: 25] | (a) | Suggest how the methoxide ion can act as a nucleophile. | | |-----|--|---------------------| | | | | | (b) | Using the 'curly arrow' model, suggest the mechanism for this reaction | l. | | | Show any relevant dipoles. | (c) | 1-lodobutane also reacts with methoxide ions. | | | c) | 1-lodobutane also reacts with methoxide ions. Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate 1-lodobutane increases the rate | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate 1-lodobutane increases the rate 1-lodobutane decreases the rate | outane would affect | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate 1-lodobutane increases the rate 1-lodobutane decreases the rate | | | | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate 1-lodobutane increases the rate 1-lodobutane decreases the rate Explain your answer. | | | (c) | Indicate, by placing a tick in one of the boxes, how the use of 1-iodol rate of reaction compared with that of 1-bromobutane. 1-lodobutane does not change the rate 1-lodobutane increases the rate 1-lodobutane decreases the rate Explain your answer. The ethanoate ion, CH ₃ COO ⁻ also acts as a nucleophile when reacti | ng with 1-bromobut | www.accesstuition.com | (e) | 1-Bromobutane ($M_{\rm r}$, 136.9) can be made from a reaction of butan-1-ol, C ₄ H ₉ OH, as shown in the equation below. | | | |-----|---|--|--| | | | $C_4H_9OH + KBr + H_2SO_4 \rightarrow C_4H_9Br + KHSO_4 + H_2O$ | | | | (i) | Calculate the atom economy for the formation of 1-bromobutane in this reaction. | | | | | | | | | | | | | | | 0/ 547 | | | | | atom economy =% [1] | | | | (ii) | Suggest a reactant, other than a different acid, that could be used to improve the atom economy of making 1-bromobutane by the same method. | | | | | [1] | | | | (iii) | A student prepares a sample of 1-bromobutane. | | | | | 5.92g of butan-1-ol are reacted with an excess of sulfuric acid and potassium bromide. After purification, 9.72g of 1-bromobutane are collected. | | | | | Calculate the percentage yield. | | | | | Give your answer to three significant figures. | percentage yield =% [3] | | | | | [Total: 12] | | | Chl | oroet | thene, CH ₂ CHC <i>l</i> , can be polymerised to form poly(chloroethene). | | |-----|-------|--|---------| | (a) | Writ | te an equation, using displayed formulae, to show the formation of this polymer. | | | | | | [2] | | (b) | | neration of plastics containing poly(chloroethene) produces waste gases that can dama
environment. | ge | | | | neration carried out in the presence of oxygen produces carbon dioxide, carbon monoxi
hydrogen chloride as waste gases and one other non-toxic product. | de | | | (i) | Write an equation for the incineration of the monomer, chloroethene, with oxygen. | | | | | | | | | | | [1] | | | (ii) | Chemists have developed ways of removing hydrogen chloride from these waste gas Sodium hydrogencarbonate, NaHCO ₃ (s), is frequently used in industry for this purpos | | | | | Explain how sodium hydrogencarbonate removes hydrogen chloride. | | | | | | [1] | | (c) | Car | bon dioxide is a greenhouse gas that is linked to global warming. | | | | The | greenhouse effect of carbon dioxide in the atmosphere is dependent on two factors. | | | | Wha | at are these two factors? | | | | 1 | | | | | | | | | | 2 | | | | | | |
[2] | | | | | | 3 | (d) | Chemists are trying to minimise climate change as a result of global warming. | | | | | |-----|---|--|--|--|--| | | | e way is to use Carbon Capture and Storage (CCS). One method of CCS is to react the bon dioxide with metal oxides. | | | | | | (i) | Write an equation to illustrate this method of CCS. | | | | | | | [1] | | | | | | (ii) | State one other method of CCS. | | | | | | | | | | | | | | [1] | | | | | | | [Total: 8] | | | | 4 lodine monobromide, IBr, has a permanent dipole. Alkenes react with IBr in a similar way to the reactions of alkenes with HBr. (a) Propene reacts with IBr to make two possible organic products. One of these products is 2-bromo-1-iodopropane. (i) Using the curly arrow model, complete the mechanism to make 2-bromo-1-iodopropane. (ii) What is the name of this mechanism? _____[1] (iii) Draw the structure of the other possible organic product of the reaction of propene with IBr. [3] | (b) | Methane reacts with IBr to form many products. | | | | | | | | |-----|--|--|--|--|--|--|--|--| | | Two | of these products are iodomethane and hydrogen bromide. | | | | | | | | | (i) | Suggest the essential condition needed for this reaction. | | | | | | | | | [1] | | | | | | | | | | (ii) | The mechanism of the reaction involves three steps, one of which is called termination. | | | | | | | | | | Describe the mechanism of the reaction that forms iodomethane and hydrogen bromide. | | | | | | | | | | Include in your answer: | | | | | | | | | | the name of the mechanism the names for the other two steps of the mechanism equations for these two steps of the mechanism the type of bond fission one equation for a termination step. | | | | | | | | Ŋ | | Your answer should link the named steps to the relevant equations. |
 | |-------------| | | |
 | |
[7] | | [Total: 13] | | The | list : | shows the s | tructural formulae of so | ome halogenoa | lkanes. | | |-----|--------|------------------|---|-----------------|---|-------------------| | | | N
O
P
Q | $\begin{array}{l} CF_3CFCl_2\\ CH_3CH_2Br\\ CH_3CH_2CH_2CH_2Br\\ CH_3CH_2CH_2CH_2I \end{array}$ | R
S
T | CH ₃ CH ₂ CHC <i>I</i> CH ₃
CH ₃ CHBrCH ₂ CHIC
(CH ₃) ₃ CBr | CH ₃ | | (a) | Cho | oose from th | ne list above, the letter | of the halogen | palkane that is extren | nely unreactive. | | | | | | | | [1] | | (b) | Hal | ogenoalkan | es react with hot KOH(| aq) to make ald | cohols. | | | | (i) | | om the list above, the
o form a diol (a molecu | | _ | ch reacts with ho | | | | | | | | [1] | | | (ii) | | curly arrow model,
H ₂ CH ₂ Br and hot KOH | | | reaction betweer | | | | Include rel | evant dipoles and the r | name of the me | chanism. | | | | (iii) | | nechanismreaction of P with hot k | | | | | | | | | | | | 5 | (c) | Write one equation, using structural formulae, to one of the listed halogenoalkanes, N , O , P , Q , R , | | |-----|---|-------------| [2] | | (d) | CFCs were once used as propellants but ha | | | • | alternatives. | . , , , | | | State one type of a biodegradable alternative. | | | | | [1] | | | | [Total: 10] | | | | |