Q	uesti	on	Answer	Marks	Guidance
1	(a)		Because hydrocarbons have different boiling points ✓	1	ALLOW each fraction / component / substance / molecule / compound / fuel has a different boiling temperatures ALLOW condense at different temperatures ALLOW because van der Waals' forces differ with molecular size IGNORE references to volatility different strength of intermolecular forces is not sufficient
	(b)		Any one from:	1	ASSUME 'they' or 'it' refers to biofuels
			Bio-fuels produce less carbon dioxide (overall) OR petrol or diesel produce more carbon dioxide (overall) ✓		ALLOW bio-fuels are (more) carbon-neutral OR plants take up the carbon dioxide released during combustion ALLOW lower carbon footprint
			Bio-fuels are renewable OR petrol and diesel are non- renewable ✓		ALLOW plants are a renewable resource / crude oil non- renewable resource / bio-diesel is more sustainable / diesel is not sustainable / petrol and diesel are made from a finite resource / petrol and diesel will run out / bio-fuels will not run out
			Allows crude oil to be used to make other products OR petrochemicals (rather than petrol) OR Save crude oil OR		ALLOW decrease the need for fossil fuels
			✓		IGNORE can be used by diesel powered cars with or without any conversion
	(c)	(i)		1	The answer must refer to carbon–carbon bonds or the carbon chain
			Idea that carbon–carbon bonds can break anywhere ✓		ALLOW (carbon) chain can break anywhere Bonds can break anywhere is not sufficient

Question		on	Answer	Marks	Guidance
1	(c)	(ii)	Correct identification of $C_2H_3^+$ for $m/z = 27 \checkmark$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW $CHCH_2^+$ DO NOT ALLOW C_2H_3 (the positive charge is essential) OR
			Some indication to explain how the identity of propene was deduced OR further analysis of the mass spectrum ✓		CCH ₃ ⁺ ALLOW Molecular ion/M ⁺ /M is $m/z = 42$ OR $m/z = 15$ is CH ₃ ALLOW mass spectrum shows $M_r = 42$ ALLOW idea that alkane C ₁₂ H ₂₆ - C ₃ H ₈ can only give 3C ₃ H ₆
			Correct identification of the alkene as C_3H_6 OR propene \checkmark		ALLOW prop-1-ene An incorrect formula for the alkene in the equation will not contradict this answer
			$C_{12}H_{26} \rightarrow C_3H_8 + 3C_3H_6 \checkmark$		ALLOW C_3H_6 from its use in an equation even if the equation is wrong providing there has not been an attempt elsewhere to identify the alkene
					ALLOW correct displayed OR structural OR skeletal OR molecular formulae in the equation

C	luesti	ion	Answer	Marks	Guidance
1	(d)		React with bromine OR $C_2H_4 + Br_2 \rightarrow C_2H_4Br_2 \checkmark$	9	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW reactants even from incorrect equations ALLOW reactants or conditions over the arrow ALLOW Br ₂ mark from the mechanism even if the mechanism is incorrect IGNORE conditions unless they would lead to a different reaction with ethene
			React with hydrogen bromide OR C_2H_4 + HBr \rightarrow $C_2H_5Br \checkmark$		reaction with ethene
			React with steam OR heat with water OR $C_2H_4 + H_2O(g) \rightarrow C_2H_5OH \checkmark$		ALLOW temperature range between 100–400 °C if quoted IGNORE reference to pressure IGNORE hydrolysis Hydration is not sufficient but DO NOT ALLOW hydrogenation
			acid (catalyst) ✓		ALLOW H ₂ SO ₄ OR H ₃ PO ₄ OR H ⁺ DO NOT ALLOW HC <i>I</i> , HBr etc. ALLOW two stage process e.g. react with HBr one mark followed by KOH(aq) one mark

Question	Answer	Marks	Guidance
Question	Answer Electrophilic addition \checkmark Curly arrow from double bond to attack $Br^{\delta+}$ of $Br-Br$ and breaking of $Br-Br$ bond \checkmark Correct dipoles shown on $Br^{\delta+}-Br^{\delta-} \checkmark$ Correct carbonium / carbocation ion drawn \checkmark Curly arrow from Br^- to the carbonium ion and correct product shown \checkmark H H H H H H H H H H H H H H H H H H H H H H H H H H	Marks	Guidance Curly arrow must start from the double bond and not a carbon atom and go the Br ⁵⁺ ; other curly arrow must start from Br–Br bond. ALLOW attack of Br–Br if dipoles not shown DO NOT ALLOW attack of Br ⁵⁻ Dipole must be partial charge and not full charge DO NOT ALLOW any other partial charges eg on the double bond Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) All atoms in the carbocation must be shown Br ⁻ curly arrow must come from one lone pair on Br ⁻ ion OR from minus sign on Br ⁻ ion Lone pair does not need to be shown on Br ⁻ ion SEE EXTRA ADVICE ABOUT CURLY ARROWS ON PAGE 30
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SEE EXTRA ADVICE ABOUT CURLY ARROWS ON PAGE

Q	uesti	on	Answer	Marks	Guidance
1	(e)		Correct shape ✓	3	IGNORE any name of shape given
			$H = H = H = 120^{\circ}$		ALLOW 115–125° ALLOW even if it is the C–C–H shown on a diagram.
			120° ✓ Three areas of electron density repel each other ✓		ALLOW three or four electron pairs repel OR three or four bonds repel IGNORE does not have any lone pairs DO NOT ALLOW atoms repel / electrons repel DO NOT ALLOW has lone pair which repels more
	(f)	(i)	H_3C H C H C H C H_2CH_3 \checkmark	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)	CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CC H H H H √	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH₃ and C₂H₅ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group IGNORE any brackets drawn ALLOW two or more repeat units but has to have a whole number of repeat units (<i>ie</i> does not have to be two) 'End bonds' MUST be shown and can be dotted IGNORE n
			Total	21	

Q	uesti	on	Answer	Mark	Guidance
2	(a)		Atom economy = $\frac{\text{sum of (all) } M_r \text{ of desired product(s)}}{\text{sum of (all) } M_r \text{ of (all) products}}$	1	ALLOW sum of (all) Mr of desired product(s) Atom economy = sum of (all) Mr of (all) reactants Sum of (all) Mr of (all) reactants sum of (all) mr of (all) reactants ALLOW for the numerator: 'sum of' to be crossed out and replaced by 'molecular mass of the desired product(s)' ALLOW for the denominator: 'sum of molecular masses of all products'
	(b)	(i)	Process 5 ✓	1	$\textbf{ALLOW } C_8 H_{18} \rightarrow C_2 H_4 + C_6 H_{14}$
		(ii)	Process 1 ✓	1	ALLOW $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_3 \rightarrow$ (CH ₃) ₂ CHCH ₂ CH ₂ CH(CH ₃) ₂
		(iii)	Process 2 ✓ water is a waste product ✓	2	ALLOW $CH_3CH_2OH + CH_3COOH \rightarrow CH_3COOCH_2CH_3 + H_2O$ ALLOW it is a condensation reaction ALLOW water is a by-product / water is a non-desirable product ALLOW process 2 has an 83% atom economy IGNORE it forms more than one product / it forms a waste product
	(c)	(i)	Less waste products OR better sustainability OR get 100% atom economy ✓ (Stops) greenhouse gas emitted OR (stops) gas that (may) cause global warming ✓	2	ALLOW no waste products / there is no longer a waste product ALLOW increase atom economy

Question	Answer	Mark	Guidance
Question (c) (ii)	Answer High percentage yield with a simple reason e.g. because the aim is to manufacture ethanol; to reduce waste; increases sustainability ✓ BUT High percentage yield because there is very efficient conversion from reactant to product OR High atom economy with a simple reason e.g. because it is cheaper or makes less harmful products; to reduces waste; increases sustainability ✓ BUT	Mark 2	Guidance No marks for just percentage yield or for atom economy. Marks are for the quality of the explanation Marks are awarded as follows One mark – a simple reason that is not fully correct whether a choice has been made or not Two marks – a choice must be made and the reason must be correct
	Figh atom economy to reduce the amount of waste products OR less by products OR more desired product $\checkmark\checkmark$		
	Total	9	

Question		on	Answer	Mark	Guidance
3	(a)		Compound of hydrogen and carbon only ✓	1	ALLOW contains hydrogen and carbon only
					DO NOT ALLOW 'it contains hydrogen and carbon' DO NOT ALLOW a mixture of hydrogen and carbon only
	(b)		F✓	1	ALLOW cyclobutane
	(c)		C₅H ₁₀ O ✓	1	ALLOW any order IGNORE structural or displayed formula
	(d)		D and E	1	ALLOW pentanal and pentan(-3-)one
			OR		
			F and G ✓		ALLOW cyclobutane and but(-2-)ene
					Award mark if both pairs are given
	(e)	(i)	Tetrahedral ✓	2	IGNORE incorrect bond angle
			Four (single) bonds (around carbon atom) OR four (single) bond pairs (around carbon atom) OR (carbon) bonded to four groups ✓		If shape is not given, explanation mark can be credited If shape is incorrect, explanation mark cannot be credited
		(ii)	Trigonal planar ✓	1	ALLOW planar triangle IGNORE if incorrect bond angle is stated
	(f)	(i)	G√	1	ALLOW but-2-ene
		(ii)	Non rotating (carbon–carbon) double bond \checkmark	2	
			Each carbon atom of the double bond attached to (two) different groups/atoms ✓		

Ques	tion	Answer	Mark	Guidance
(g)		10	ANNOTATE ANSWER WITH TICKS AND CROSSES
		Equation $C_3H_7X + KOH \rightarrow C_3H_7OH + KX$ OR $C_3H_7X + OH^- \rightarrow C_3H_7OH + X^- \checkmark$		X = Br or C/ ALLOW molecular, structural, displayed or skeletal formula in equation ALLOW $C_3H_7X + H_2O \rightarrow C_3H_7OH + HX$ ALLOW equation from the mechanism IGNORE incorrect equations
		Structure of product		ALLOW structural, displayed or skeletal formula of product if seen ONCE in equation, mechanism or drawn out
		CH ₃ CH ₂ CH ₂ OH ✓		
		Reaction mechanism		If two mechanism shown award marks from the mechanism that gives the higher mark
		QWC - nucleophilic substitution ✓		$C_{2}H_{5} = C_{F}^{\delta_{+}} = H_{al}^{\delta_{-}}$ H $\downarrow \qquad \qquad$
		dipole shown on C–Hal bond, C^{δ_+} and Hal $^{\delta}$ \checkmark		Ĥ
		curly arrow from HO ⁻ to carbon atom of C–Hal bond \checkmark		C₂H₅—— C_ —— OH + Hal⁻
		curly arrow from C–Hal bond to the halogen atom \checkmark		H H
				The curly arrow must start from the oxygen lone pair or the negative charge on the oxygen of OH ion No need to show lone pair on the oxygen atom

Question	Answer	Mark	Guidance
(g)			ALLOW S _N 1 mechanism
			dipole shown on C–Hal bond, $C^{\delta+}$ and Hal $^{\delta-} \checkmark$
	Type of bond fission		
	QWC - heterolytic ✓		curly arrow from OH^- to correct carbocation \checkmark
	Reasons for the difference in rate of hydrolysis		
	1-bromopropane reacts faster (than 1-chloropropane) OR B reacts faster (than C) OR C–Br reacts faster ✓		IGNORE bromine reacts faster than chlorine ALLOW ora
	Because the C–Br bond is weaker OR C–Br has a lower bond enthaloy		ALLOW less energy to break C–Br
	OR C−Br bond is longer ✓		ALLOW ora
	C–Br is more easy to break ✓		ALLOW ora
(h)	With H ₂	3	ALLOW methylcyclohexane
	With HBr		ALLOW 1-bromo-1-methylcyclohexane
	Br		ALLOW 2-bromo-1-methylcyclohexane
	Total	23	