Question		Answer	Marks	Guidance
$\mathbf{1}$	(a)		Because hydrocarbons have different boiling points \checkmark (a)	Any one from: Bio-fuels produce less carbon dioxide (overall) OR petrol or diesel produce more carbon dioxide (overall)
(b)				

	uest	Answer	Marks	Guidance
1	(d)	$\text { React with bromine } \mathrm{OR}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2} \checkmark$ React with hydrogen bromide $\mathrm{OR}_{2} \mathrm{H}_{4}+\mathrm{HBr} \rightarrow$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \checkmark$ React with steam OR heat with water OR $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ $\rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$ acid (catalyst) \checkmark	9	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW reactants even from incorrect equations ALLOW reactants or conditions over the arrow ALLOW Br_{2} mark from the mechanism even if the mechanism is incorrect IGNORE conditions unless they would lead to a different reaction with ethene IGNORE conditions unless they would lead to a different reaction with ethene ALLOW temperature range between $100-400^{\circ} \mathrm{C}$ if quoted IGNORE reference to pressure IGNORE hydrolysis Hydration is not sufficient but DO NOT ALLOW hydrogenation ALLOW $\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{OR}_{3} \mathrm{PO}_{4} \mathrm{OR} \mathrm{H}^{+}$ DO NOT ALLOW $\mathrm{HCl}, \mathrm{HBr}$ etc. ALLOW two stage process e.g. react with HBr one mark followed by $\mathrm{KOH}(\mathrm{aq})$ one mark

Question	Answer	Marks	Guidance
	Electrophilic addition \checkmark Curly arrow from double bond to attack $\mathrm{Br}^{\bar{\delta}+}$ of $\mathrm{Br}-\mathrm{Br}$ and breaking of $\mathrm{Br}-\mathrm{Br}$ bond Correct dipoles shown on $\mathrm{Br}^{\delta+}-\mathrm{Br}^{\delta-} \checkmark$ Correct carbonium / carbocation ion drawn Curly arrow from Br^{-}to the carbonium ion and correct product shown		Curly arrow must start from the double bond and not a carbon atom and go the $\mathrm{Br}^{\text {סे }}$; other curly arrow must start from $\mathrm{Br}-\mathrm{Br}$ bond. ALLOW attack of $\mathrm{Br}-\mathrm{Br}$ if dipoles not shown DO NOT ALLOW attack of $\mathrm{Br}^{\text {º }}$ Dipole must be partial charge and not full charge DO NOT ALLOW any other partial charges eg on the double bond Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) All atoms in the carbocation must be shown Br^{-}curly arrow must come from one lone pair on Br^{-}ion $\mathbf{O R}$ from minus sign on Br^{-}ion Lone pair does not need to be shown on Br^{-}ion ALLOW mechanism which goes via a cyclic bromonium ion instead of the carbocation SEE EXTRA ADVICE ABOUT CURLY ARROWS ON PAGE 30

Question			Answer	Marks	Guidance
1	(e)		Correct shape \checkmark Three areas of electron density repel each other \checkmark	3	IGNORE any name of shape given ALLOW 115-125 ${ }^{\circ}$ ALLOW even if it is the $\mathrm{C}-\mathrm{C}-\mathrm{H}$ shown on a diagram. ALLOW three or four electron pairs repel OR three or four bonds repel IGNORE does not have any lone pairs DO NOT ALLOW atoms repel / electrons repel DO NOT ALLOW has lone pair which repels more
	(f)	(i)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		(ii)		1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW CH_{3} and $\mathrm{C}_{2} \mathrm{H}_{5}$ groups above or below chain ALLOW bond to ethyl and methyl group to any part of ethyl or methyl group IGNORE any brackets drawn ALLOW two or more repeat units but has to have a whole number of repeat units (ie does not have to be two) 'End bonds' MUST be shown and can be dotted IGNORE n
			Total	21	

www.accesstuition.com

Question			Answer	Mark	Guidance
2	(a)		$\text { Atom economy }=\frac{\text { sum of (all) } M_{r} \text { of desired product(s) }}{\text { sum of (all) } M_{r} \text { of (all) products }}$	1	
	(b)	(i)	Process $5 \checkmark$	1	ALLOW $\mathrm{C}_{8} \mathrm{H}_{18} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{6} \mathrm{H}_{14}$
		(ii)	Process $1 \checkmark$	1	ALLOW CH3 CH2 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}]{\rightarrow}$
		(iii)	Process 2 water is a waste product	2	$\text { ALLOW } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$ ALLOW it is a condensation reaction ALLOW water is a by-product / water is a non-desirable product ALLOW process 2 has an 83\% atom economy IGNORE it forms more than one product / it forms a waste product
	(c)	(i)	Less waste products OR better sustainability OR get 100\% atom economy \checkmark (Stops) greenhouse gas emitted OR (stops) gas that (may) cause global warming \checkmark	2	ALLOW no waste products / there is no longer a waste product ALLOW increase atom economy

Question			Answer	Mark	Guidance
3	(a)		Compound of hydrogen and carbon only \checkmark	1	ALLOW contains hydrogen and carbon only DO NOT ALLOW 'it contains hydrogen and carbon' DO NOT ALLOW a mixture of hydrogen and carbon only
	(b)		F \checkmark	1	ALLOW cyclobutane
	(c)		$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O} \checkmark$	1	ALLOW any order IGNORE structural or displayed formula
	(d)		D and E OR F and G	1	ALLOW pentanal and pentan(-3-)one ALLOW cyclobutane and but(-2-)ene Award mark if both pairs are given
	(e)	(i)	Tetrahedral Four (single) bonds (around carbon atom) OR four (single) bond pairs (around carbon atom) OR (carbon) bonded to four groups \checkmark	2	IGNORE incorrect bond angle If shape is not given, explanation mark can be credited If shape is incorrect, explanation mark cannot be credited
		(ii)	Trigonal planar \checkmark	1	ALLOW planar triangle IGNORE if incorrect bond angle is stated
	(f)	(i)	G \checkmark	1	ALLOW but-2-ene
		(ii)	Non rotating (carbon-carbon) double bond Each carbon atom of the double bond attached to (two) different groups/atoms	2	

Question	Answer	Mark	Guidance
(g)	Type of bond fission QWC - heterolytic Reasons for the difference in rate of hydrolysis 1-bromopropane reacts faster (than 1-chloropropane) OR B reacts faster (than C) OR C-Br reacts faster Because the $\mathrm{C}-\mathrm{Br}$ bond is weaker OR C-Br has a lower bond enthalpy OR $\mathrm{C}-\mathrm{Br}$ bond is longer \checkmark $\mathrm{C}-\mathrm{Br}$ is more easy to break		ALLOW $\mathbf{S}_{\mathbf{N}} 1$ mechanism dipole shown on $\mathrm{C}-\mathrm{Hal}$ bond, $\mathrm{C}^{\bar{\delta}+}$ and $\mathrm{Hal}{ }^{\text {б- }}$ curly arrow from $\mathrm{C}-\mathrm{Hal}$ bond to the halogen atom curly arrow from OH^{-}to correct carbocation IGNORE bromine reacts faster than chlorine ALLOW ora ALLOW less energy to break $\mathrm{C}-\mathrm{Br}$ ALLOW ora ALLOW ora
(h)	With H_{2} With HBr	3	ALLOW methylcyclohexane ALLOW 1-bromo-1-methylcyclohexane ALLOW 1-bromo-2-methylcyclohexane ALLOW 2-bromo-1-methylcyclohexane
	Total	23	

