(Quest	ion	Expected Answers	Marks	Additional Guidance
1	а	i	Series having same functional group and a general formula ✓	1	ALLOW same functional group and members vary by CH ₂ ALLOW organic compounds with the same functional group that differ in length of their hydrocarbon chain
		ii		2	BOTH answers need to be comparisons
			More surface contact OR bigger molecules ✓		ALLOW higher relative formula mass OR has more electrons OR longer chain length OR more carbon atoms IGNORE surface area / bigger compounds
			More van der Waals' forces ✓		ALLOW stronger van der Waals' forces / stronger induced dipoles VDW forces is not sufficient More intermolecular forces is not sufficient DO NOT ALLOW breaking bonds within the chain / breaking covalent bonds IGNORE reference to bonds if not linked to covalent bonds
	b	i	Pent-1-yne OR pent-2-yne ✓	1	ALLOW pentyne Look for answer in the table if not on answer line but answer line takes precedence
		ii	C_nH_{2n-2}	1	ALLOW $C_n H_{2(n-1)}$

C	Quest	ion	Expected Answers	Marks	Additional Guidance
1	b	111	Correct displayed formula ✓	1	н н—с—с <u></u> с—н н
		iv	Correct skeletal formula of cyclic hydrocarbon with formula C_6H_{10} \checkmark	1	Examples of correct skeletal formulae include
	C		Energy required to break bonds = (+) 2912 \checkmark Energy released to make bonds = (–)4148 \checkmark Enthalpy of combustion = -1236 \checkmark	3	 ALLOW full marks for correct answer with no working out ALLOW (2 × 415) + (837) + (2.5 × 498) ALLOW (4 × -805) + (2 × -464) OR (4 × 805) + (2 × 464) ALLOW ECF for calculation of enthalpy of combustion ALLOW 2 marks for +1236 with no working out

(Quest	ion	Expected Answers	Marks	Additional Guidance
1	d	i	(Enthalpy change) when one mole of a compound ✓	3	IGNORE energy required / energy released ALLOW (energy change) when one mole of a substance DO NOT ALLOW enthalpy change for one mole of products
			is made from its elements (in their standard states) \checkmark		
			(Standard conditions are) 298 K and 100 kPa \checkmark		ALLOW 1 atmosphere pressure / 101 kPa / 10^5 Pa / 1.01 × 10^5 Nm ⁻² / 1000 millibars / 25 °C / any stated temperature in words IGNORE 1 mol dm ⁻³ for solutions
		ii	From energy cycle Enthalpy change to get elements = $-(-60) - (2 -286) / (+)$ 632 \checkmark	3	ALLOW full marks for -128 with no working out
			Enthalpy change from elements = $-987 + (+227) / (-)760 \checkmark$		ALLOW ECF from errors in calculation
			Enthalpy change = −128 ✓		ALLOW two marks for answer of -414 / +128 / -1392 / +1392
					ALLOW one mark for answer of +414
	e	i	$\frac{26.0}{100.1} \times 100$ 26.0% \checkmark	2	First mark for 100.1 OR (64.1 + 36.0) OR (74.1 + 26.0) at bottom of fraction with or without × 100 ALLOW full marks for 26.0 or 26% with no working
					out
					ALLOW from two significant figures up to calculator value ALLOW 25.97 / 26%
					NO ECF for this part from incorrect numbers in first expression

Question		Expected Answers	Marks	Additional Guidance	
1 e	ii	1.56 × 10 ⁴ OR 15600 OR 15601 ✓	1	ALLOW calculator value of 15600.62402 and any rounded value to a minimum of three significant figures	
	iii	1.5 × 10 ⁴ OR 15000 ✓	1	ALLOW 1.50×10^4 etc.	
	iv	96.2 ✓	1	 ALLOW ECF from (iii) ÷ (ii) ALLOW calculator value 96.1538461 and any rounded value to a minimum of two significant figures ALLOW 96.14768284 if 15601 is used ALLOW any value between 88 to 89 if answer to (iii) was calculated by dividing by 26 	
	V	 Any two from: Low atom economy gives a poor sustainability OR low atom economy means lots of waste ✓ A use for the aqueous calcium hydroxide needs to be developed to increase atom economy ✓ Alternative process needs to be developed with high atom economy ✓ 	2	ANNOTATE WITH TICKS AND CROSSES IGNORE comments about percentage yield ALLOW ECF from (i) e.g. high atom economy will have good sustainability ALLOW find a use for the waste to increase atom economy	
		Total	23		

(Question	Expected Answers	Marks	Additional Guidance
2	Question a	Expected Answers Sideways overlap of two p orbitals on each carbon atom ✓ forms π-orbital or π-bond above and below plane of molecule ✓	Marks 2	Additional Guidance Answers can be awarded from a labelled diagram see additional page with typical diagrams you might see
				2p orbitals Drawings with a double bond drawn can score a maximum of one mark Drawing above with no labels scores one mark

Each of the diagrams on its own scores no mark

www.accesstuition.com

C	Question		Expected Answers	Marks	Additional Guidance
2	b	i	Double bond does not rotate / restricted rotation of the double bond ✓ Each carbon atom of double bond is bonded to (two) different groups ✓	2	ALLOW π bond does not rotate ALLOW each carbon atom of double bond is bonded to (two) different atoms / each end of the π-bond is
					bonded to different groups or atoms \checkmark
		ii	C and E ✓	1	

Question	Expected Answers	Marks	Additional Guidance
С	CH_3CH_2OH / ethanol \checkmark	1	IGNORE alcohol
d		9	ANNOTATE WITH TICKS AND CROSSES QWC mark and 8 other marking points
	$\begin{array}{rcl} C_4H_8 \ + \ HBr \ \overrightarrow{\rightarrow} \ C_4H_9Br \ \checkmark \\ C_2H_4 \ + \ HBr \ \overrightarrow{\rightarrow} \ C_2H_5Br \ \checkmark \end{array}$		The equation must be the overall equation not a series of steps as in a mechanism
	B makes CH ₃ CH ₂ CH ₂ CH ₂ Br ✓ CH ₃ CHBrCH ₂ CH ₃ ✓		ALLOW skeletal or displayed formulae ALLOW B makes 1-bromobutane and 2-bromo butane ✓ if marks for the structures not awarded
	QWC – number of products is linked to structure of alkene e.g. because D is symmetrical OR B is not symmetrical \checkmark		
	Movement of electron pair from double bond to attack hydrogen of H–Br and breaking of H–Br bond ✓ Correct dipole shown on H–Br ✓ Correct carbonium ion drawn ✓ Curly arrow from Br ⁻ to the carbonium ion ✓		$H \xrightarrow{C} C \xrightarrow{H} H \xrightarrow{H} $
			 ALLOW curly arrow from lone pair or minus sign of bromide ion ALLOW marks for the mechanism even if the wrong alkene is used e.g. for alkene B If two mechanisms are drawn mark the one for alkene D

Question	Expected Answers	Marks	Additional Guidance
e i	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Must have at least two repeat units and the free bonds at the end All carbon–carbon bonds in the polymer chain must be shown ALLOW bond to ethyl group to any part of ethyl group IGNORE any brackets drawn
ii	Poly(but-1-ene) ✓	1	ALLOW polybut-1-ene n.b. the bracket is part of the answer DO NOT ALLOW polybutene
fi	 (Lots of) OH group present ✓ Can form hydrogen bonds with water ✓ 	2	ALLOW hydroxyl group present / hydroxy group Alcohol group is not sufficient
ii	 Any two from: Incineration to produce energy OR combustion to produce energy ✓ Sorting and recycling OR sorting and remoulding ✓ Cracked (to give monomers) OR as an organic feedstock ✓ 	2	Used as a fuel is not sufficient IGNORE use photodegradable or biodegradable polymers
	Total	21	

Q	uesti	on	Expected Answers	Marks	Additional Guidance
3	(a)		$C_nH_{2n+2} \checkmark$	1	ALLOW $C_n H_{2(n+1)} \checkmark$
					IGNORE size of subscripts
	(b)	(i)	$C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O \checkmark$	1	ALLOW any correct multiples
					IGNORE state symbols
		(ii)	limited supply of air OR not enough $O_2 \checkmark$	1	ALLOW use of air or oxygen
					IGNORE it is not completely oxidised
	(c)	(i)	$2CO + 2NO \rightarrow 2CO_2 + N_2 \checkmark$	1	ALLOW any correct multiples including fractions
					IGNORE state symbols
	(c)	(ii)	CO and NO are adsorbed (onto surface) OR reactants are adsorbed (onto surface) ✓	3	ALLOW CO and NO stick onto surface OR CO and NO form weak attractions to the surface OR gases are adsorbed onto surface NOT absorb but allow ecf for deabsorb later on
			weakening of bonds OR lowers activation energy \checkmark		IGNORE alternative pathway Requires less energy is not sufficient
			CO_2 and N_2 desorbs (from the surface) OR products desorbs (from the surface) \checkmark		ALLOW products leave the surface OR products diffuse away from surface OR weak attraction to surface is broken ALLOW deadsorb
	(d)		skeletal formula of a branched isomer of C_8H_{18} \checkmark	2	ALLOW any ring between C_3 and C_8 with 8 carbon atoms
			skeletal formula of a cyclic hydrocarbon OR skeletal formula of substituted arene of $C_8H_{10}\checkmark$		per molecule
					IGNORE wrong names
					If two correct structural or displayed formulae drawn award one mark

Question	Expected Answers	Marks	Additional Guidance
(e)	Any TWO from: atmospheric concentration ✓	2	ALLOW the amount of the gas OR abundance of gas
	ability to absorb infrared radiation ✓		ALLOW how much IR it absorbs OR ability to absorb heat IGNORE global warming potential / heat reflected / how much is produced
	residence time ✓		ALLOW how long it stays in the atmosphere
	Any TWO from: deep in the oceans OR on the sea-bed ✓	2	
	storage in geological formations \mathbf{OR} under the sea-bed \checkmark		ALLOW piped into disused or partially filled oil wells
	by reaction (with metal oxides) to form carbonates \checkmark		ALLOW stored as a carbonate OR equation to show formation of suitable carbonate from an oxide IGNORE mineral storage
			IGNORE reforestation
	Total	13	

Question	Expected Answers	Marks	Rationale
4 (a)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	4	 ALLOW skeletal formula OR displayed formulae IGNORE molecular formulae IF two answers given e.g. name and structure then both must be correct to be given a mark ALLOW methylpropane OR (CH₃)₃CH ✓ ALLOW 1,2-dibromo-methylpropane OR CH₂BrCBr(CH₃)₂ ✓ ALLOW 1-bromo-methylpropane OR CH₂BrCH(CH₃)₂ ✓ ALLOW 2-bromo-methylpropane OR CH₃CBr(CH₃)₂ ✓ ALLOW ecf if wrong carbon skeleton is used in all of the structures mark first structure wrong and then apply ecf for the rest
(b)	curly arrow from double bond to $Br^{\delta+}$ and curly arrow from Br — Br bond pair to $Br^{\delta-}$ in 1st step \checkmark curly arrow in 2nd step from bromide ion \checkmark correct dipole shown on $Br_2 \checkmark$ correct carbocation shown \checkmark H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 H \downarrow CH_3 $Br \delta+$ $Br \delta+$ $Br \delta-$	4	Curly arrow must start from the double bond and not a carbon atom, other curly arrow must start from Br—Br bond ALLOW curly arrow from any part of bromide ion The bromide ion does not need to show a lone pair Dipole must be partial charge and not full charge Carbocation needs a full charge and not a partial charge (charges do not need to be surrounded by a circle) ALLOW carbocation on carbon 1 where electrophile attacks carbon 2 i.e. ⁺ CH ₂ CBr(CH ₃) ₂

Questi	on	Expected Answers	Marks	Rationale
(c)	(i)	C ₆ H ₁₀ ✓	1	
	(ii)	$M_{\rm r}({\rm cyclohexanol}) = 100 \checkmark$	3	ALLOW full marks for correct answer with no or limited working out
		amount of cyclohexanol = 0.0765 mol \checkmark		ALLOW ecf from wrong molar mass i.e. 7.65 ÷ molar mass
		percentage yield = 35.0% ✓		ALLOW ecf from wrong amount in moles i.e. [0.0268 ÷ moles] × 100 ALLOW 35%
				ALLOW two marks for 0.35%
				If $M_{\rm r}$ of 82 is used then % yield will be 28.7 or 29 and this is worth two marks
(d)	(i)	(sum of) the molecular masses of the desired product ÷ sum of molecular masses of all products × 100 ✓	1	ALLOW (sum of) the molecular masses of the desired product ÷ sum of molecular masses of all reactants × 100 ✓
	(ii)	this preparation is addition OR has 100% atom economy OR there is only one product ✓	2	ALLOW no by products formed
		preparation from cyclohexanol has less than 100% atom economy OR H ₂ O is produced as well OR calculated atom economy = $82\% \checkmark$		ALLOW other substances formed OR cyclohexene is not the only product
		Total	15	