Question	Expected Answers	Marks	Additional Guidance
Question 1 (a)	Structural isomer compounds with the same molecular formula ✓ but with different structural formulae ✓ Stereoisomer compounds with the same structural formula ✓ but with different arrangements in space ✓ Evidence of using M _r of 70 to calculate molecular formula of C ₅ H ₁₀ ✓ F and G are Correct identification of the E and Z isomers ✓	Marks 11	ALLOW same molecular formula ✓ but different structures ✓ Second marking point is DEPENDENT on first mark ALLOW compounds with the same structure Second marking point is DEPENDENT on first mark This is the QWC mark IGNORE wrong names of F, G and H ALLOW structural or displayed formulae for F, G and H e.g. H is CH₃CH₂CHCH₂ ALLOW identification using trans and cis and ALLOW this marking point as identification of another example of identifying E/Z or cis and trans if not done for F and G
	H is		ALLOW one mark if no structures drawn but correct names given for F , G and H i.e <i>E</i> -pent-2-ene, <i>Z</i> -pent-2-ene and pent-1-ene ALLOW ecf on structures if wrong molecular formula used or consistent error or slip such as having just sticks
	E/Z happens because double bonds restricts rotation ✓		
	different groups on each carbon of the double bond ✓		

Question	Expected Answers	Marks	Additional Guidance
Question (b)	from IR absorption, J contains O–H OR from IR J is an alcohol \checkmark $C: H: O = \frac{70.59}{12.0}: \frac{13.72}{1.0}: \frac{15.69}{16.0}$ OR $5.8825: 13.72: 0.9806 \checkmark$ empirical formula = $C_6H_{14}O$ \checkmark (from mass spectrum), $M_r = 102$ \checkmark evidence that it has been shown that the empirical formula is the molecular formulae e.g. M_r of $C_6H_{14}O = 102$ so empirical formula is molecular formula \checkmark	Marks 8	This is a QWC mark ALLOW two marks for correct empirical formula with no working out This is a QWC mark ALLOW structural or displayed formulae IGNORE incorrect names
	OH		ALLOW one minor slip in drawing structures e.g. one missing hydrogen but ALLOW ecf for bigger slips such as showing just sticks and no hydrogen atoms ALLOW bond to H in OH ALLOW one mark for three isomers of C ₆ H ₁₃ OH whether branched or unbranched as a catch mark if no other mark has been awarded for the structures If more than three isomers of C ₆ H ₁₃ OH drawn 1 branched and 3 unbranched award two marks any other combination award one mark ALLOW one mark for hexan-1-ol, hexan-2-ol and hexan-
	Total	40	3-ol if structures not drawn
	Total	19	

Ques	tion	er	Marks	Guidance
2 (a)		(a compound) with no double bond (or triple bond) ✓ containing hydrogen and carbon only ✓	2	ALLOW contains single bonds only ALLOW it contains just carbon and hydrogen DO NOT ALLOW a mixture of carbon and hydrogen OR only carbon and hydrogen molecules
(b)		CH ₂ ✓	1	ALLOW H ₂ C
(c)		D and I OR F and G OR F and H ✓	1	DO NOT ALLOW G and H
(d)	(i)	Cyclic hydrocarbons have more efficient combustion ✓	1	The answer must relate to combustion or burning Assume 'they' refers to the cyclic hydrocarbons ALLOW cyclic hydrocarbons allow smoother burning OR cyclic hydrocarbons increase octane number OR cyclic hydrocarbons reduce knocking OR cyclic hydrocarbons are less likely to produce pre-ignition OR cyclic hydrocarbons are more efficient fuels OR cyclic hydrocarbons burn better OR easier to burn OR cyclic hydrocarbon combust more easily OR improves combustion DO NOT ALLOW cyclic hydrocarbons ignite more easily ALLOW ora for straight chain hydrocarbons IGNORE cyclic hydrocarbons increase volatility of fuel IGNORE cyclic hydrocarbons have a lower boiling point cyclic hydrocarbons are a better fuel on their own is NOT sufficient cyclic hydrocarbons burn more cleanly on their own is NOT sufficient

Que	estio	n	Answer	Marks	Guidance
	(d)	(ii)	$C_7H_{16} \rightarrow C_7H_{14} + H_2 \checkmark$	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) DO NOT ALLOW cycloheptane structure in equation
	(e)		D has more surface (area of) contact OR D is a bigger molecule ✓	2	Both answers need to be comparisons Assume 'it' refers to D ALLOW has more electrons OR longer (carbon) chain OR higher molecular mass IGNORE surface area
			D has more van der Waals' forces OR C have fewer van der Waals' forces ✓		ALLOW ORA ALLOW D has stronger van der Waals' forces / larger VDW / greater VDW OR C has weaker van der Waals' forces OR C has smaller VDW ALLOW more VDW forces More intermolecular forces is not sufficient
					DO NOT ALLOW reference to bonds breaking or more bonds present unless it is clear that the bonds are VDW
	(f)		Same structural formula ✓	2	ALLOW have the same structure / displayed formula / skeletal formula
					Stereoisomers have the same formula or molecular formula is not sufficient
			Different arrangement of groups around a double bond OR different arrangement (of atoms) in space ✓		ALLOW different three dimensional arrangement

Question	er	Marks	Guidance
(g)	C ₇ H ₁₆ + 11O ₂ → 7CO ₂ + 8H ₂ O Correct reactants and products ✓ Balancing ✓	2	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple IGNORE state symbols Balancing is dependent on correct formulae
(h)	C ₁₆ H ₃₄ → C ₈ H ₁₈ + 2C ₄ H ₈ ✓	1	ALLOW molecular formulae OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct multiple ALLOW structural OR displayed OR skeletal formulae in equation ALLOW but-1-ene IGNORE state symbols
(i) (Group of atoms (in a molecule or compound) that is responsible for the reactions ✓	1	ALLOW the 'part' (of the molecule or compound) that reacts ALLOW the group of atoms that gives the chemical properties ALLOW group of atoms which indicates the homologous series
(ii)	8 🗸	1	
(iii)	has an unpaired electron ✓	1	ALLOW plural i.e. unpaired electrons has a lone OR single OR free electron is not sufficient
	Total	16	

C	uesti	on	Answer	Marks	Guidance
3	(a)		Any three from:	3	Assume it refers to Process 1
			Process 1 has a high atom economy OR has 100% atom economy OR a greater atom economy OR makes only the desired product ✓		ALLOW process 1 has no waste OR process 1 has no coproducts OR process 1 needs less separation OR process 1 has fewer other products OR gives only one product ALLOW ORA if process 2 is specified
			Process 1 has a very efficient conversion of reactants to products OR not much waste of starting material ✓		ALLOW ORA if process 2 is specified high percentage yield is not sufficient DO NOT ALLOW if percentage yield is explicitly linked to more waste (products) e.g. process 1 has a high percentage yield so makes little waste (product) scores 0 marks but process 1 makes no waste (product) and it has a high percentage yield scores 1 mark
			Process 1 uses a lower pressure ✓		ALLOW ORA if process 2 is specified
			Process 1 uses up toxic carbon monoxide ✓		
			Process 1 uses methanol which can be produced from biomass ✓		IGNORE process 2 comes from crude oil a non-renewable source ALLOW process 1 starts from a renewable source if the source is specified e.g. wood, municipal waste or sewage
					IGNORE reference to catalyst and rate of reaction

Question	er	Marks	Guidance
(b) (5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Contains C=O bond because of absorption between 1700 and 1740 cm ⁻¹ (from the spectrum) ✓		ALLOW contains a carbonyl group because of absorption within range 1640–1750 cm ⁻¹ OR contains an aldehyde, ketone or carboxylic acid because of absorption within range 1640–1750 cm ⁻¹ ✓ Mention of only an aldehyde or a ketone is not sufficient it needs reference to the wavenumber LOOK FOR THIS MARK ON THE SPECTRUM
	does not contain an O–H bond ✓		ALLOW not a carboxylic acid ✓ ALLOW does not have any other characteristic absorbance due to other functional groups
	(So was a) ketone OR aldehyde ✓		ALLOW (so was a) carbonyl compound ALLOW this mark if a structure of an aldehyde or a ketone is given even if the structure has an incorrect number of carbon atoms
	<i>M</i> _r = 86 ✓		
	Correct structure ✓		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
			LOOK FOR AN ALDEHYDE or KETONE with FIVE carbon atoms OR a DIALDEHYDE, DIONE OR an OXOALDEHYDE with FOUR carbon atoms – a comprehensive list of correct structures is shown on page 34 IGNORE incorrect name
			DO NOT ALLOW COH for an aldehyde

Question	er	Marks	Guidance
	H H H H H H H H H H H H H H H H H H H		ALLOW as a slip one stick with no H on in a displayed formula
	H H CH ₃ H CC C C C H H H H H 2 methylbutenel		
	2-methylbutanal OR H H H H H C C C C C C C H H H O H H pentan-3-one		

Question	er	Marks	Guidance
(b) (Correct structure ✓	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) All bonds and all hydrogen atoms must be shown in a displayed formula within this question
	Name of the structure drawn ✓		Name must correspond to the correct structure for two marks ALLOW butanoic acid or 2-methylpropanoic acid if the structure drawn is incorrect There is no ECF in this question
	H—————————————————————————————————————		ALLOW CH ₃ CH ₂ COOH
	butanoic acid OR		
	H—CH ₃		ALLOW (CH ₃)₂CHCOOH
	2-methylpropanoic acid		ALLOW methylpropanoic acid

Question	er	Marks	Guidance
(c)	Use of propan-1-ol ✓	4	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW from the equation propanol OR C ₃ H ₇ OH is not sufficient
	CH ₃ COOH + C ₃ H ₇ OH → CH ₃ COOCH ₂ CH ₂ CH ₃ + H ₂ O Correct formulae for the ester ✓ Correctly balanced equation ✓		ALLOW molecular formula OR correct structural OR displayed OR skeletal formula OR mixture of the above ALLOW propan-2-ol in the equation
	Add H₂SO₄ OR acid catalyst OR H ⁺ ✓		ALLOW conditions mark over the arrow in the equation
	Total	14	

Question	er	Marks	Guidance
4 (a)	compound P compound Q H H C H H H C H H H C H H H C H H H C H H H C H H H H C H H H H C H H H H H H C H	3	ALLOW structures with missing hydrogen atoms on the carbon atoms that do not take part in the reaction. i.e. all hydrogen atoms must be shown in Q but not in P and R For example for the structures of P and R C C C H Br Br

Question	er	Marks	Guidance
(b)	Orange OR brown to colourless ✓	1	ALLOW shades of orange OR yellow OR brown DO NOT ALLOW red alone DO NOT ALLOW any response that includes precipitate OR solid, irrespective of colour
(c)	Two or more repeat units CH2 CH2 CH2 CH2 CH2 H H H H H		ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Must have at least two repeat units and the free bonds at the end ALLOW free bonds with dotted lines All carbon–carbon bonds in the polymer chain must be shown IGNORE any brackets drawn IGNORE any missing hydrogen atoms on the CH2 groups ALLOW skeletal formula

Question	er	Marks	Guidance
(d)	Curly arrow from double bond to attack hydrogen of H–C <i>I</i> and breaking of H–C <i>I</i> bond ✓	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Curly arrow must start from the double bond and not a carbon atom; other curly arrow must start from H–C/ bond DO NOT ALLOW dipoles on double bond
	Correct dipole shown on H–Cl ✓		Dipole must be partial charge and not full charge
	Correct carbonium ion drawn ✓		Carbocation needs a full charge and not a partial charge (charges do not need to be in a circle)
	Curly arrow from CI $^-$ to the carbonium ion \checkmark H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_4 H_4 H_4 H_5 H_4		C/ curly arrow must come from one lone pair on C/ ion OR from minus sign on C/ ion Lone pair does not need to be shown on C/ ion ALLOW structures with missing hydrogen atoms on the CH ₂ groups
	H C CI product Correct product ✓		

Question	er	Marks	Guidance
(e)		5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Nucleophilic substitution ✓		
	Heterolytic (fission) spelt correctly ✓		
	dipole shown on C—CI bond, $C^{\delta+}$ and $CI^{\delta-}$		Dipole must be partial charge and not full charge
	curly arrow from HO [−] to carbon atom of C—C <i>I</i> bond ✓		HO ⁻ curly arrow must come from one lone pair on of HO ⁻ ion OR from minus sign on HO ⁻ ion
	curly arrow from C—CI bond to the chlorine atom and formation of CI		curly arrow must start from C–CI bond and not from C atom
	H_2C CH_2 H_2C CH_2 H_2C CH_2 H_2C CH_2		ALLOW structures with missing hydrogen atoms of the CH ₂ groups
			ALLOW S _N 1 mechanism dipole shown on C—CI bond, C ^{δ+} and CP̄- ✓ curly arrow from C—CI bond to the CI atom and C shown ✓ curly arrow from HO ⁻ to correct carbonium ion ✓
	Total		