

Questi	on	Answer	Marks	Guidance
(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓✓	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal,
		Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		substance, solid
		DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
		DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

Question	Answer	Marks	Guidance
(a) (iii)		2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
(b) (i)	Fe ²⁺ : $1s^22s^22p^63s^23p^63d^6 \checkmark$ Br ⁻ : $1s^22s^22p^63s^23p^63d^{10}4s^24p^6 \checkmark$	2	ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₁ ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a

Question	Answer	Marks	Guidance	
(b) (ii)			FULL ANNOTATIONS NEEDED	
	With Cl ₂ AND Br ₂ AND I ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND Fel ₂ ✓		ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants	
	OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe −0.44 AND Cl ₂ +1.36 e.g. Iron has more/most negative electrode potential With Cl ₂ AND Br ₂ , products are Fe ³⁺ (AND halide ion)	3	ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons	
(c)	FeCl₃ AND FeBr₃ ✓ BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks		ALLOW correct multiples throughout ALLOW equilibrium signs in all equations	
	1st mark for ALL CORRECT species e.g.: Fe ²⁺ + NO ₃ ⁻ + H ⁺ → Fe ³⁺ + NO + H ₂ O 2nd mark for CORRECT balanced equation 3Fe ²⁺ + NO ₃ ⁻ + 4H ⁺ → 3Fe ³⁺ + NO + 2H ₂ O ✓✓		For 1st mark, IGNORE e ⁻ present	
	Reaction 2: 1 mark ${}_{2}O)_{6}]^{2^{+}} + NO \rightarrow [Fe(H_{2}O)_{5}NO]^{2^{+}} + H_{2}O \checkmark$	3	Check carefully for correct charges	
	[Fe(H Total	16		

	Quest	ion	Answer	Marks	Guidance
2	(a)	(i)	$2K^{+}(g) + S^{2-}(g) $ $2K^{+}(g) + S^{-}(g) + e^{-}$ $2K(g) + S(g)$	3	Mark each marking point independently Correct species AND state symbols required for each mark For S ²⁻ , DO NOT ALLOW S ⁻² For e ⁻ , ALLOW e For e ⁻ only , IGNORE any state symbols added ALLOW k and s It can be very difficult distinguishing K from k; S from s

(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓ ✓	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid
		Award marks as follows.		
		1st mark: formation of compound from gaseous ions		IGNORE : $2K^+(g) + S^{2-}(g) \longrightarrow K_2S(s)$
		2nd mark: one mole for compound only		(question asks for words)
		DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark (special case) for absence of 'gaseous' only, i.e.
		Note: A definition for enthalpy change of formation will receive no marks		the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓

(a) (iii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2116 (kJ mol ⁻¹) award 2 marks	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
	$-381 - (2 \times +89 + 279 + 2 \times +419 -200 + 640) \checkmark$ $-381 - 1735$ $= -2116 \checkmark (kJ mol^{-1})$	See list below for marking of answers from common errors
		For other answers, check for a single transcription error or calculator error which could merit 1 mark DO NOT ALLOW any other answers, e.g.
		−1608 (2 errors: 2 × 89 and 2 x 419 not used for K)−846 (3 errors:)

(b)	Lowest melting point KI RbCl Highest melting point NaBr Correct order ✓ Mark 2nd and 3rd marking points independently Attraction and ionic size linked: Greater attraction from smaller ions/closer ions/larger charge density ✓ Comparison needed Energy AND attraction/breaking bonds linked: More energy/heat to overcome attraction (between ions)		PULL ANNOTATIONS MUST BE USED ORA throughout Response must clearly refer to ions for explanation marks 2nd and 3rd marking point must be comparative DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc DO NOT ALLOW responses using nuclear size or attraction DO NOT ALLOW responses linked with loss of electrons IGNORE larger electron density ALLOW smaller sum of radii gives a greater ionic attraction IGNORE NaBr has greater ionic attraction IGNORE NaBr has smallest ionic radius (not focussing on size of each ion) ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles, e.g.
	Energy AND attraction/breaking bonds linked: More energy/heat to overcome attraction (between ions) OR More energy/heat to break (ionic) bonds ✓	3	ASSUME bonds broken are ionic unless otherwise stated DO NOT ALLOW incorrect named particles, e.g. 'atoms', 'molecules', Na, Cl, Cl ₂ , 'atomic', etc Note: Comparison for energy only (i.e. link between more energy and breaking bonds/overcoming attraction)
	Total	10	

C	Question		Answer	Marks	Guidance
3	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions (under standard conditions) ✓	2	IGNORE 'energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark
	(b)	(i)		2	Correct species AND state symbols required for both marks 2e required for left-hand response ALLOW e for e Mark each marking point independently
		(ii)	 (enthalpy change of) formation (of calcium oxide) ✓ (enthalpy change of) atomisation of oxygen ✓ Second electron affinity (of oxygen) ✓ 	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (confusion with LE) atomisation AND oxygen/O ₂ /½O ₂ /O both required (atomisation of calcium is also in cycle) IGNORE oxygen or oxygen species, e.g. O ⁻ DO NOT ALLOW calcium

Question	Answer	Marks	Guidance
(b) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -3454 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors 1st mark for expression linking ΔH _{LE} (CaO) with ΔH values
	OR $\Delta H_{LE}(CaO) = -635 - [178 + 249 + 590 + 1145 + (-141) + 798]$ OR $-635 - 2819 \checkmark$ $= -3454 \checkmark (kJ mol^{-1})$		ALLOW for 1 mark: -3736 use of +141 instead of -141 (+)3454 all signs reversed (+)2184 wrong sign before 2819 -218 wrong sign for 635 -185 wrong sign for +798 Any other number: CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Question	Answer	Marks	Guidance
(c)	For first 2 marks, IGNORE nuclear attraction OR proton attraction Property AND effect required IGNORE 'atomic' and 'atoms' and 'molecules' and assume telephone IGNORE LE increases OR LE decreases IGNORE bond strength; strength of ionic bonds	hat 'size'	' and 'charge' refers to ions
	First 2 marks Decrease in (ionic) size AND more negative LE OR more exothermic OR more attraction ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc ORA throughout
	Increase in (ionic) charge OR charge density AND more negative LE OR more exo thermic OR more attraction ✓		ALLOW pull for attraction IGNORE just 'greater force' (could be repulsion) IGNORE responses in terms of packing IGNORE electron density IGNORE lower/higher LE
	Link between LE and attraction Lattice enthalpy correctly linked to attraction between IONS at least once ✓ e.g. Greater attraction between ions gives more negative LE		For 3rd marking point ONLY, IONS is essential; DO NOT ALLOW attraction between atoms or molecules DO NOT ALLOW nuclear attraction
	Total	12	

Ques	stion	Answer	Marks	Guidance
Ques 4 (a		Answer (The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	Marks 2	Guidance IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements'
				IGNORE : $Li^+(g) + F^-(g) \longrightarrow LiF(s)$ Question asks for a definition, not an equation

uestion	Answer	Marks	Guidance
(a)	(The enthalpy change that accompanies)		IGNORE 'Energy needed' OR 'energy required'
	the formation of one mole of a(n ionic) compound \checkmark		37 37 1
	from its gaseous ions ✓ (under standard conditions)	2	ALLOW as alternative for compound: lattice, crystal,
			substance, solid, product
			Note: 1st mark requires 1 mole
			2nd mark requires gaseous ions
			IF candidate response has '1 mole of gaseous ions',
			award 2nd mark but NOT 1st mark
			IGNORE reference to 'constituent elements'
			IGNORE : $Li^+(g) + F^-(g) \longrightarrow LiF(s)$
			Question asks for a definition, not an equation
			,

Question	Answer	Marks	Guidance	
(b) (i)	 Mark Line 1 first as below (right or wrong) Mark Line 4 as below (right or wrong) Mark difference in species on Line 1 and Line 2 MUST match one of the enthalpy changes in the table: atomisation of Li(s) atomisation of ½F₂(g) first ionisation energy of Li(g) Repeat for differences on Line 2 and Line 3 		ANNOTATIONS MUST BE U	 lows:
	4 Li ⁺ (g) + F(g) + e ⁻ 3 Li(g) + F(g) 2 Li(s) ¹ / ₂ F ₂ (g) Correct species and state symbols required for all marks IF an electron has formed, it MUST be shown as e ⁻ OR e	4	Line 1: IF ½F ₂ (g) is NOT e.g., for F(g), F(s), F(l), F(aq),	Line 4 and Li(s) → Li(g)]

Question	Answer	Marks	Guidance
(b) (ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1046 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check the list below for marking of answers from common errors
(c)	$\Delta H < T\Delta S$ OR $\Delta H - T\Delta S < 0$ OR ΔH is more negative than $T\Delta S$ OR Negative value of ΔH is more significant than negative value of $T\Delta S \checkmark$	1	ALLOW 'exothermic' for negative ALLOW a negative lattice energy value ALLOW ΔH is negative AND magnitude of ΔH > magnitude of $T\Delta S$ IGNORE ONLY magnitude of ΔH > magnitude of $T\Delta S$

Question	Answer	Marks	Guidance	
(d)	For FIRST TWO marking points, assume that the following etc. For 'ions', ALLOW 'atoms' For Mg ²⁺ , Na ⁺ , Cl ⁻ and F ⁻ , ALLOW symbols: Mg, N ALLOW names: magnesium, sodium, chlorine, chlorine, and i.e. ALLOW Mg has a smaller (atomic) radius For THIRD marking point, IONS must be used	DO NOT ALLOW molecules ALLOW F <i>l</i> for F		
	Comparison of size of anions Chloride ion OR Cl⁻ is larger (than F⁻) OR Cl⁻ has smaller charge density (than F⁻) ✓		DRA To is smaller DR Thas a larger charge density ✓ GNORE just Clot is large comparison required	
	Comparison of size AND charge of cations Mg ²⁺ is smaller (than Na ⁺) AND Mg ²⁺ has a greater charge (than Na ⁺) ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge ✓ IGNORE just Mg ²⁺ is small comparison required ALLOW 'greater charge density' for 'greater charge' but NOT for smaller size	
	Comparison of attraction between ions F⁻ has greater attraction for Na⁺ / + ions AND Mg²⁺ has greater attraction for F⁻ / − ions ✓ Quality of Written Communication:	3	+ AND – IONS must be used for this mark IGNORE greater attraction between ions in NaF AND MgF ₂ + AND – ions OR oppositely charged ions are required ASSUME attraction to be electrostatic unless stated otherwise: e.g. DO NOT ALLOW nuclear attraction	
	Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy		ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction IGNORE just 'greater force' (could be repulsion) IGNORE comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions IGNORE responses in terms of packing	
	Total	12	Total Toopensoo III terme of paorang	