

Question	Answer	Marks	Guidance
(a) (ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) $\checkmark \checkmark$ Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only DO NOT ALLOW 2nd mark without 1st mark DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal, substance, solid IGNORE: $\mathrm{Fe}^{2+}(\mathrm{g})+\mathrm{LI}^{-}(\mathrm{g}) \longrightarrow \mathrm{Fel}_{2}(\mathrm{~s})$ (Part of cycle) ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ALLOW 1 mark for ΔH_{f} definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

Question		Answer	Marks	Guidance
(a)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - $\mathbf{2 4 7 3}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 2 marks $(-113)=416+(2 \times+107)+759+1561+(2 \times-295)+\Delta H_{\mathrm{LE}}\left(\mathrm{Fel}_{2}\right)$ OR $\Delta H_{\mathrm{LE}}\left(\mathrm{Fel}_{2}\right)=$ $-113-(416+(2 \times+107)+759+1561+(2 \times-295))$ OR -113-2360 \downarrow $=-2473 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +461 instead of +416
(b)	(i)	$\begin{aligned} & \mathrm{Fe}^{2+}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}^{6} \checkmark \\ & \mathrm{Br}^{-}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} \end{aligned}$	2	ALLOW $4 s$ before $3 d$, ie $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$ ALLOW $1 \mathrm{~s}^{2}$ written after answer prompt (ie $1 \mathrm{~s}^{2}$ twice) ALLOW upper case D, etc and subscripts, e.g.4S $3 \mathrm{~S}_{1}$ ALLOW for $\mathrm{Fe}^{2+} \ldots4 \mathrm{~s}^{0}$ DO NOT ALLOW [Ar] as shorthand for $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ Look carefully at $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ - there may be a mistake

Question		Answer	Marks	Guidance

Ques		Answer	Marks	Guidance
2 (a)	(i)		3	Mark each marking point independently Correct species AND state symbols required for each mark For S^{2-}, DO NOT ALLOW s^{-2} For e^{-}, ALLOW e For e^{-}only, IGNORE any state symbols added ALLOW k and s It can be very difficult distinguishing K from k; S from s

| (a) | (ii) | (The enthalpy change that accompanies)
 the formation of one mole of a(n ionic) compound
 from its gaseous ions (under standard conditions)\checkmark |
| :--- | :--- | :--- | :--- | :--- |\quad| (Award marks as follows. |
| :--- |
| 1st mark: formation of compound from gaseous ions |
| 2nd mark: one mole for compound only |
| DO NOT ALLOW 2nd mark without 1st mark |
| Note: A definition for enthalpy change of formation will
 receive no marks |

IF there is an alternative answer, check to see if there is any ECF credit possible using working below.

See list below for marking of answers from common errors

ALLOW for 1 mark ONE mistake with sign OR use of 2 :
2
-2027 (2×89 not used for K)
-1697 ($\mathbf{2} \times 419$ not used for K)
-2516 (+200 rather than -200 for S 1st electron affinity)
(+)2116 (wrong sign)
-1354 (+381 instead of -381)
(+)1354 (+1735 instead of -1735)
-836 (-640 instead of +640)
$-1558(-279$ instead of +279$)$
$-1760(-2 \times 89$ instead of $+2 \times 89)$
$-439(-2 \times 419$ instead of $+2 \times 419)$
-2120 (rounded to 3SF)
For other answers, check for a single transcription error or calculator error which could merit 1 mark

DO NOT ALLOW any other answers, e.g.
-1608 (2 errors: $\mathbf{2 \times 8 9}$ and $\mathbf{2 \times 4 1 9}$ not used for K) -846 (3 errors:)

Question			Answer	Marks	Guidance
3	(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions (under standard conditions) \checkmark	2	IGNORE 'energy needed' OR 'energy required’ ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has ' 1 mole of gaseous ions', award 2nd mark but NOT 1st mark
	(b)	(i)		2	Correct species AND state symbols required for both marks $2 e^{-}$required for left-hand response ALLOW efor e^{-} Mark each marking point independently
		(ii)	(enthalpy change of) formation (of calcium oxide) (enthalpy change of) atomisation of oxygen Second electron affinity (of oxygen)	3	calcium oxide not required for this mark DO NOT ALLOW 'lattice formation' (confusion with LE) atomisation AND oxygen $/ \mathrm{O}_{2} / 1 / 2 \mathrm{O}_{2} / \mathrm{O}$ both required (atomisation of calcium is also in cycle) IGNORE oxygen or oxygen species, e.g. O^{-} DO NOT ALLOW calcium

Ques		Answer	Marks	Guidance
(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - $3454\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $-635=178+249+590+1145+(-141)+798+\Delta H_{\mathrm{LE}}(\mathrm{CaO})$ OR $\Delta H_{\mathrm{LE}}(\mathrm{CaO})=-635-[178+249+590+1145+(-141)+798]$ OR $-635-2819 \checkmark$ $=-3454 \checkmark\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors 1st mark for expression linking $\Delta H_{\mathrm{LE}}(\mathrm{CaO})$ with ΔH values ALLOW LE for $\Delta H_{\text {LE }}$ ALLOW for 1 mark: Any other number:CHECK for ECF from 1st marking point Award 1 mark for one transcription error only and everything else correct: e.g. +187 instead of +178 IF any value has been omitted, award zero

Ques	Answer	Marks	Guidance
(c)	For first 2 marks, - IGNORE nuclear attraction OR proton attraction - Property AND effect required - IGNORE 'atomic' and 'atoms' and 'molecules' and assume that 'size' and 'charge' refers to ions - IGNORE LE increases OR LE decreases - IGNORE bond strength; strength of ionic bonds		
	First 2 marks Decrease in (ionic) size AND more negative LE OR more exothermic OR more attraction \checkmark Increase in (ionic) charge OR charge density AND more negative LE OR more exothermic OR more attraction \checkmark \qquad Link between LE and attraction Lattice enthalpy correctly linked to attraction between IONS at least once \checkmark e.g. Greater attraction between ions gives more negative $L E$	3	ANNOTATE WITH TICKS AND CROSSES, etc ORA throughout ALLOW pull for attraction IGNORE just 'greater force' (could be repulsion) IGNORE responses in terms of packing IGNORE electron density IGNORE lower/higher LE For 3rd marking point ONLY, IONS is essential; DO NOT ALLOW attraction between atoms or molecules DO NOT ALLOW nuclear attraction
	Total	12	

Question		Answer	Marks	Guidance
4	(a)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR ‘energy required’ ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has ' 1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements' IGNORE: $\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}^{-}(\mathrm{g}) \longrightarrow \mathrm{LiF}(\mathrm{s})$ Question asks for a definition, not an equation

Question		Answer	Marks	Guidance
(a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound \checkmark from its gaseous ions \checkmark (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements'
IGNORE: Li'(g) + F'(g) $\longrightarrow \longrightarrow$ LiF(s)				

Questio		Answer	Marks	Guidance
(b)	(i)	1. Mark Line 1 first as below (right or wrong) 2. Mark Line 4 as below (right or wrong) 3. Mark difference in species on Line 1 and Line 2 MUST match one of the enthalpy changes in the table: atomisation of $\mathrm{Li}(\mathrm{s})$ atomisation of $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ first ionisation energy of $\mathrm{Li}(\mathrm{g})$ 4. Repeat for differences on Line $\mathbf{2}$ and Line 3		ANNOTATIONS MUST BE USED ALLOW marks by ECF as follows: Follow order at top of Answer column
		$4 \frac{\mathrm{Li}^{+}(\mathrm{g})+\mathrm{F}(\mathrm{~g})+\mathrm{e}^{-}}{}$		ALLOW atomisation of $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ before atomisation of $\mathrm{Li}(\mathrm{s}):$ before atomisation of $\mathrm{Li}(\mathrm{g}$ $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$
		 Correct species and state symbols required for all marks IF an electron has formed, it MUST be shown as e^{-}OR e	4	e^{-}required for marks involving Line 3 AND Line 4
				Common errors Line 4: Missing e ${ }^{-}$and rest correct 3 marks Line 1: \quad IF $1 / 2 \mathrm{~F}_{2}(\mathrm{~g})$ is NOT shown 2 max [Line 4 and $\mathrm{Li}(\mathrm{s}) \rightarrow \mathrm{Li}(\mathrm{g})$] e.g., for $F(g), F(s), F(I), F(a q), F_{2}(g)$ DO NOT ALLOW Fl when first seen but credit subsequently

Questio		Answer	Marks	Guidance
(b)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = - $1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks $(-616)=(+159)+(+79)+(+520)+(-328)+\Delta H_{\mathrm{LE}}(\mathrm{LiF})$ OR $\begin{aligned} & \Delta H_{\mathrm{LE}}(\mathrm{LiF})=(-616)-[(+159)+(+79)+(+520)+(-328)] \\ & =-616-430 \\ & =-1046\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark} \end{aligned}$	2	IF there is an alternative answer, check the list below for marking of answers from common errors $\begin{array}{\|lc} \text { ALLOW for } 1 \text { mark: } \\ +1046 & \text { wrong sign } \\ -18 & +430 \text { instead of }-430 \\ +18 & +616 \text { instead of }-616 \\ -1006.5 & (+79) \Delta H_{\text {at }}(\mathrm{F}) \text { halved to }+39.5 \\ -170 & \text { wrong sign for } 328 \end{array}$ Any other number: CHECK for ECF from 1st marking point for expressions with ONE error only e.g. one transcription error: e.g. +195 instead of +159
(c)		$\Delta H<T \Delta S$ OR $\Delta H-T \Delta S<0$ OR ΔH is more negative than $T \Delta S$ OR Negative value of ΔH is more significant than negative value of $T \Delta S$ NOTE IGNORE comments about ΔG	1	ANNOTATIONS MUST BE USED ALLOW 'exothermic' for negative ALLOW a negative lattice energy value ALLOW ΔH is negative AND magnitude of $\Delta H>$ magnitude of $T \Delta S$ IGNORE ONLY magnitude of $\Delta H>$ magnitude of $T \Delta S$

Question	Answer	Marks	Guidance
(d)	For FIRST TWO marking points, assume that the following refer to 'ions', Mg^{2+}, etc. DO NOT ALLOW molecules For 'ions', ALLOW 'atoms' ALLOW Fl for F For $\mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}$and F^{-}, ALLOW symbols: $\mathrm{Mg}, \mathrm{Na}, \mathrm{Cl}$ and F ALLOW names: magnesium, sodium, chlorine, chloride, fluorine, fluoride i.e. ALLOW Mg has a smaller (atomic) radius For THIRD marking point, IONS must be used		
	Comparison of size of anions Chloride ion OR Cl ${ }^{-}$is larger (than F^{-}) OR Cl' has smaller charge density (than F^{-}) \checkmark Comparison of size AND charge of cations Mg^{2+} is smaller (than Na^{+}) AND Mg^{2+} has a greater charge (than Na^{+}) \checkmark Comparison of attraction between ions F^{-}has greater attraction for $\mathrm{Na}^{+} /+$ions AND Mg^{2+} has greater attraction for $\mathrm{F}^{-} /-$ions \checkmark Quality of Written Communication: Third mark needs to link ionic size and ionic charge with the attraction that results in lattice enthalpy	3	ANNOTATIONS MUST BE USED ORA F^{-}is smaller OR F^{-}has a larger charge density \checkmark IGNORE just Cl^{-}is large comparison required ORA: Na^{+}is larger AND Na^{+}has a smaller charge \checkmark IGNORE just Mg^{2+} is small comparison required ALLOW 'greater charge density' for 'greater charge' but NOT for smaller size + AND - IONS must be used for this mark IGNORE greater attraction between ions in NaF AND MgF_{2} + AND - ions OR oppositely charged ions are required ASSUME attraction to be electrostatic unless stated otherwise: e.g. DO NOT ALLOW nuclear attraction ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction IGNORE just 'greater force' (could be repulsion) IGNORE comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions IGNORE responses in terms of packing
	Total	12	

