Ques	tion	er	Mark	Guidance
1 (a)		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	 IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE: Mg²⁺(g) + 2Cl⁻(g) → MgCl₂(s) (question asks for words)
(b)	(i)	Hydration involves bond forming OR bonds are made ✓	1	 ALLOW statement of any type of bond being formed ALLOW (chloride) ions attract water (molecules) ALLOW a response in terms of hydrogen bonds breaking AND bond making DO NOT ALLOW response stating that energy is required DO NOT ALLOW response that refers to ions in H₂O, eg H⁺
	(ii)	$Mg^{2+}(aq) + 2CI^{-}(g) \checkmark$ $Mg^{2+}(aq) + 2CI^{-}(aq) \checkmark$	2	Correct species AND state symbols required for both marks Mark each marking point independently ALLOW response on upper line: Mg ²⁺ (g) + 2Cl ⁻ (aq) (ie Cl ⁻ hydrated before Mg ²⁺) ALLOW MgCl ₂ (aq)

(Quest	ion	er	Mark	Guidance
1	(b)	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = −1921 (kJ mol ⁻¹) award 2 marks		IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
			$(-2493) + (-154) = (2 \times -363) + \Delta H_{hyd}(Mg^{2+}) \checkmark$ $\Delta H_{hyd}(Mg^{2+}) = (-2493) + (-154) - (2 \times -363)$ $= -1921 \text{ (kJ mol}^{-1}) \checkmark$	2	ALLOW for 1 mark: -2284 use of Cl ⁻ rather than 2 x Cl ⁻ (+)1921 signs all reversed OR lack of 2 for 363 -1613 sign wrong for 154 (+)3065 sign wrong for 2493 -3373 sign wrong for 2 x 363
	(c)		Magnesium ion OR Mg ²⁺ is smaller OR Mg ²⁺ has greater charge density ✓		 ORA: Calcium ion OR Ca²⁺ is larger OR Ca²⁺ has smaller charge density IGNORE idea of close packing of ions IGNORE 'atomic' and 'atoms' and assume that Mg or Ca refer to ions, ie ALLOW Mg has a smaller (atomic) radius
			Mg ²⁺ has a stronger attraction to H ₂ O OR Mg ²⁺ has a stronger bonding with H ₂ O ✓	2	 ALLOW Mg has a stronger attraction to H₂O ORA: e.g. Ca²⁺ has less attraction to H₂O DO NOT ALLOW Mg atoms have a stronger attraction to H₂O DO NOT ALLOW stronger attraction/bonding between ions Note: Response must refer to attraction/bonding with H₂O or this must be implied from the whole response
			Total	9	

Question	Expected Answers	Marks	Additional Guidance
2 a	F B G E D FIVE correct ✓✓ FOUR correct ✓✓ THREE correct ✓	3	ALLOW 1450 736 G 76 -6
b	Correct calculation -642 - (+76 + (2 × 150) + 736 + 1450 + (2 × -349)) ✓ -642 - 1864 = - 2506 ✓ (kJ mol ⁻¹)	2	ALLOW for 1 mark: $-2705 (2 \times 150 \text{ and } 2 \times 349 \text{ not used for Cl})$ $-2356 (2 \times 150 \text{ not used for Cl})$ $-2855 (2 \times 349 \text{ not used for Cl})$ +2506 (wrong sign) DO NOT ALLOW any other answers
C	Magnesium ion OR Mg ²⁺ has greater charge (than sodium ion OR Na ⁺) OR Mg ²⁺ has greater charge density ✓ Magnesium ion OR Mg ²⁺ is smaller ✓ Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion OR Greater attraction between oppositely charged ions ✓	3	ANNOTATIONS MUST BE USED ALLOW magnesium/Mg is 2+ but sodium/Na is 1+ DO NOT ALLOW Mg atom is 2+ but Na atom is 1+ ALLOW 'charge density' here only ALLOW Mg OR magnesium is smaller DO NOT ALLOW Mg ²⁺ has a smaller atomic radius ALLOW anion OR negative ion for Cl ⁻ DO NOT ALLOW chlorine ions DO NOT ALLOW Mg has greater attraction ALLOW 'attracts with more force' for greater attraction but DO NOT ALLOW 'greater force (could be repulsion) ALLOW reverse argument throughout in terms of Na ⁺
	Total	8	ALLOW REVERSE algument throughout in terms of Na

Qu	est	ion	Expected Answers	Marks	Additional Guidance
3	а		$(K_{c} =) \frac{[NH_{3}]^{2}}{[N_{2}] [H_{2}]^{3}} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ^{−2} ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect K_c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0} \text{ OR } 1.2 \text{ (mol dm}^{-3}\text{)}$		1st mark is for realising that concentrations need to be calculated.
			AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm ⁻³) \checkmark $[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)} \checkmark$		Correct numerical answer with no working would score all previous calculation marks
			= 0.876 OR 0.88 (mol dm ⁻³) ✓		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH ₃ = $0.876 \times 6 = 5.26$ OR 5.3 (mol) \checkmark		ALLOW calculator value down to 5.3, correctly rounded

Question	Expected Answers	Marks	Additional Guidance
b	EXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT		Additional Guidance ALLOW ECF from incorrect concentrations (3 marks) For example, If concentrations not calculated at start, then $[NH_3] = \sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)}$ \checkmark $= 31.5 \text{ mol dm}^{-3} \checkmark$ Equilibrium amount of NH ₃ = 31.5 × 6 = 189.6 (mol) \checkmark IF candidate has K_c expression upside down, then all 4 marks are available in (b) by ECF Correct [N ₂] AND [H ₂] \checkmark $[NH_3] = \sqrt{\frac{[N_2] [H_2]^3}{K_c}} = = \sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}}$ \checkmark $= 11.0 \text{ mol dm}^{-3} \checkmark$ Equilibrium amount of NH ₃ = 11.0 × 6 = 66.0 (mol) \checkmark IF candidate has used K_c value of 8.00×10^{-2} AND values for N ₂ AND H ₂ with powers wrong, mark by ECF from calculated as below (3 max in (b)) Correct [N ₂] AND [H ₂] \checkmark [NH ₃] expression \times ECF: Calculated [NH ₃] \checkmark

Question	Expected Answers	Marks	Additional Guidance
C i	Equilibrium shifts to right OR Equilibrium towards ammonia ✓ Right hand side has fewer number of (gaseous) moles ✓	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards' ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
ii	K_c does not change \checkmark Increased pressure increases concentration terms on bottom of K_c expression more than the top OR system is now no longer in equilibrium \checkmark top of K_c expression increases and bottom decreases until K_c is reached \checkmark	3	ALLOW there are more (gaseous) mores of here ANNOTATIONS MUST BE USED Any response in terms of K_c changing scores ZERO for Part (ii) ALLOW K_c is temperature dependent only OR K_c does not change with pressure ALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to K_c
d i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4+ H_2O \longrightarrow CH_3OH + H_2$ $CH_4+ 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4+ H_2O \longrightarrow 2H_2 + HCHO$ $CH_4+ 2H_2O \longrightarrow 3H_2 + HCOOH$
ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Question	Expected Answers	Marks	Additional Guidance	
e i	Unless otherwise stated, marks are for correctly calculated values.		ANNOTATIONS MUST BE USED	
	Working shows how values have been derived.		See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)	
	$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / = (2 \times 192) - (191 + 3 \times 131) \checkmark$ = -200 (J K ⁻¹ mol ⁻¹) OR -0.200 (kJ K ⁻¹ mol ⁻¹)		NO UNITS required at this stage IGNORE units	
	Use of 298 K (could be within ΔG expression below) \checkmark			
	$\Delta G = \Delta H - T \Delta S$			
	OR			
	$\Delta G = -92 - (298 \times -0.200)$ OR			
	$\Delta G = -92000 - (298 \times -200) \checkmark$			
	= -32.4 kJ mol ⁻¹ OR -32400 J mol ⁻¹ ✓ (Units must be shown)	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown) Award all 5 marks above for correct answer with no working	
			IF 25 °C has been used instead of 298 K, correctly calculated ΔG values are = -87 kJ mol ⁻¹ OR -87000 J mol ⁻¹ 4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks	
	For feasibility, $\Delta G < 0$ OR ΔG is negative \checkmark	1		
ii	As the temperature increases, $T\Delta S$ becomes more negative OR $T\Delta S$ becomes more negative than ΔH OR $T\Delta S$ becomes more significant \checkmark	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T\Delta S$ ALLOW – $T\Delta S$ becomes more positive ALLOW – $T\Delta S$ decreases	
	Eventually $\Delta H - T \Delta S$ becomes positive \checkmark		ALLOW $\triangle G$ becomes positive OR $\triangle G > 0$	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
		iii	Activation energy is too high OR reaction too slow ✓	1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
			Total	22	

Qu	esti	on	Expected answers	Marks	Additional guidance
4	а		(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound ✓ from its gaseous ions ✓ (under standard conditions)	2	IGNORE 'Energy needed' OR 'energy required' ALLOW as alternative for compound: lattice, crystal, substance, solid, product Note: 1st mark requires 1 mole 2nd mark requires gaseous ions IF candidate response has '1 mole of gaseous ions', award 2nd mark but NOT 1st mark IGNORE reference to 'constituent elements'
					IGNORE : $2Na^+(g) + O^{2-}(g) \longrightarrow Na_2O(s)$ Question asks for a definition, not an equation
	b	i	C (or 2C)ABDGE (or 2E)FAll seven correct $\checkmark \checkmark \checkmark$ Five OR six correct $\checkmark \checkmark$ Three OR four correct \checkmark	3	ALLOW 496 (OR 992) -141 790 249 G OR Lattice enthalpy/LE [OR answer to (ii)] 108 (OR 216) -4
		ii	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2520 (kJ mol ⁻¹) award 2 marks -414 = $(2 \times 108) + 249 + (2 \times 496) + (-141) + 790$) + ΔH_{LE} OR $\Delta H_{LE} = -414 - [(2 \times 108) + 249 + (2 \times 496) + (-141) + 790]$ = $-414 - 2106 = -2520$ (kJ mol ⁻¹) \checkmark	2	IF there is an alternative answer, check the list below for marking of answers from common errorsALLOW for 1 mark: -1692 wrong sign for 414 -1916 2×108 and 2×496 not used for Na ⁺ -2412 2×108 not used for Na ⁺ -2024 2×496 not used for Na ⁺ $+2520$ wrong sign for final answer -2802 sign changed for 1st electron affinity ofoxygen -2395.5

Question	Expected answers	Marks	Additional guidance
			Any other number: CHECK for ECF from 1st marking point
			for expressions with ONE error only
С	ALLOW reverse argument throughout (ORA)		ANNOTATIONS MUST BE USED
			NOTE : For ALL marking points, assume that the following refer to 'ions', Mg^{2+} , etc. For 'ions', ALLOW 'atoms' For Mg^{2+} , Na^+ , O^{2-} and S^{2-} , ALLOW symbols: Mg, Na, O and S ALLOW names: magnesium, sodium, oxygen, oxide, sulfur, sulfide BUT DO NOT ALLOW molecules <i>i.e.</i> ALLOW Mg has a smaller (atomic) radius
			IGNORE idea of close packing of ions
	Comparison of size AND charge of cations Mg ²⁺ is smaller AND Mg ²⁺ has a greater charge OR Mg ²⁺ has a greater charge density ✓		ORA: Na ⁺ is larger AND Na ⁺ has a smaller charge OR Na ⁺ has a smaller charge density ✓ IGNORE just Mg ²⁺ is small comparison required
	Comparison of size of anions S ^{2−} is larger OR S ^{2−} has a smaller charge density ✓ Comparison of attraction of a cation and an anion Mg ²⁺ has stronger attraction OR Na ⁺ has weaker attraction AND		ORA O ^{2−} is smaller OR O ^{2−} has a larger charge density ✓ IGNORE just S ^{2−} is large comparison required ALLOW pull for attraction ALLOW 'attracts with more force' for greater attraction
	S ²⁻ has weaker attraction OR O ²⁻ has stronger attraction \checkmark	3	BUT IGNORE just 'greater force' (<i>could be repulsion</i>) OR comparison of bond strength/energy to break bonds IGNORE comparisons of numbers of ions

Qu	Question		Expected answers	Marks	Additional guidance
	d	i	Cycle needs formation of $CO_3^{2^-}$ ions (from C and O) \checkmark <i>i.e.</i> NOT breaking up of $CO_3^{2^-}$ ion	1	ALLOW carbonate ion contains C and O ALLOW carbonate ion contains 2 elements
					IGNORE sodium carbonate contains 3 elements IGNORE carbonate ion has covalent bonds
	d	ii	See also Appendix 1 at end of mark scheme Mark allocation 1 - $2Na^+(g) + CO_3^{2-}(g)$ on a top line AND $Na_2CO_3(s)$ on a lower line AND 'Lattice enthalpy' label (as below) links the lines \checkmark 2 - $2Na^+(g) + CO_3^{2-}(g)$ on a top line AND $2Na^+(aq) + CO_3^{2-}(g)$ on a middle line AND $2Na^+(aq) + CO_3^{2-}(aq)$ on a lower line AND ΔH hydration' labels (as below) link the lines \checkmark NOTE: For hydration labels, see diagram below		IGNORE carbonate ion has covalent bondsANNOTATIONS MUST BE USEDMARK AS FOLLOWS1. Mark the cycle2. IF there is no cycle, mark the equation belowState symbols are required for ALL speciesIGNORE direction of any arrows until MARK 3ALLOW Na2CO3(aq) on a lower line as an alternative for 2Na ⁺ (aq) + CO3 ²⁻ (aq)ALLOW CO32- hydrated first: i.e. 2Na ⁺ (g) + CO32-(aq) on middle line
			2 x hydration of Na ⁺ OR hydration of 2 x Na ⁺ is required		 ALLOW two hydration stages combined i.e. 2Na⁺(g) + CO₃^{2−}(g) on a top line AND 2Na⁺(aq) + CO₃^{2−}(aq) on a lower line AND BOTH 'Hydration' labels link the lines ✓
			 3 – ∆H solution' label BELOW Na₂CO₃(s) AND ALL arrows in correct directions ✓ 	3	IF cycle shown using NaCO ₃ , Na ⁺ and CO ₃ ⁻ ALLOW ECF for third marking point only NOTE: DO NOT ALLOW ECF from any other species For simple energy cycles a maximum of 2 marks only can be awarded – See APPENDIX 1
					For an equation, only 1 mark can be awarded Lattice enthalpy = $-\Delta H$ (solution) Na ₂ CO ₃ + [2 x ΔH (hydration) Na ⁺] + ΔH (hydration) CO ₃ ²⁻

Question	Expected answers	Marks	Additional guidance
	$ \begin{array}{c c} 2Na^{+}(g) + CO_{3}^{2-}(g) \\ 2 \times Hydration \\ of Na^{+} \\ 2Na^{+}(aq) + CO_{3}^{2-}(g) \\ \hline Na_{2}CO_{3}(s) \\ Hydration \\ of CO_{3}^{2-} \\ Change of \\ solution \\ \end{array} $		OR Lattice enthalpy + ΔH (solution) Na ₂ CO ₃ = 2 x ΔH (hydration) Na ⁺ + ΔH (hydration) CO ₃ ²⁻ \checkmark IGNORE state symbols for equation approach
	Total	14	